

Conception and Operation of a Unique Large-scale PV Hybrid System on a Hebridean Island

Frank Thim, SMA Solar Technology AG

Overview

- 1. Introduction
- 2. The electrification program
- 3. System overview
- 4. Power control and power balance
- 5. Benefits for the inhabitants
- 6. Summary of the field experience

1. Introduction

- > Scottish Inner Hebrides
- > 16 km distance to the coast
- > 9 km north to south extension
- > 5 km east to west extension
- > Harboring around 100 residents
- > Community: 45 households, 26 business, 6 community buildings
- > Population is growing

2. Before the Electrification Program

- > Depending on their own produced energy
- > Mostly diesel generators
- > Maintenance of own systems
- > Systems switch off at night (candles)
- > Never served by electricity from the mainland

On 1st February 2008, the Isle of Eigg Electrification Project for whole Community switched on for the first time!

3. System Overview

This system integrates multiple renewable power sources

- > Hydro (110 kW)
- > Wind (24 kW)
- > Solar (10 kWp)
- These power sources are distributed and coupled by a medium voltage grid over several kilometers

- > 3 Hydro generators
- > 110 kW (major renewable energy source)

Provides enough power most of the year – except in summer months!

3. Power Sources: Wind Turbines

- > 4 Proven wind turbines
 connected to Windy Boy
 6000 A
- > 24 kW (Second largest renewable resource)
- Provides power all over the year (– but lowest yield in summer)

3. Power Sources: The PV Array

- > PV array with 165 W
 modules with 3 Sunny Boy
 3000
- > 10 kWp (Smallest renewable resource)
- Provides additional power in summer

3. The System Control Unit

- > 12 Sunny Island 5048 off-grid inverters
- > 100 kW peak power
- > Rolls 212 kWh battery bank

System control

3. Electrical Schematic

4. Battery State of Charge Control

- > The Sunny Island monitor and control the power balance of the whole system automatically
- Integrated control parameter: State of charge (SOC) of the batteries:
 - > 60 %: generator is started
 - > 90 %: generator is stopped and batteries supply the loads

Generator is only needed if available renewable power is not sufficient !

4. Frequency Shift Power Control

- > Frequency is shifted if battery bank is full and more renewable power is produced than being used – Control steps:
 - 1. Connect space heaters via frequency controlled switches
 - 2. Connect dump loads via frequency controlled switches
 - 3. Output power of Hydro, Wind, Solar will be limited

System control without additional communication lines and with standard devices possible

4. Power Generation

PV supplements Water & Hydro power during summer

4. Power Balance

5. Recent developments

- > New properties on the Island
- > Increasing energy demand
- > In May/June 2010 very little rain on Eigg, reduced consumption & increased generator support
- > New 22 kWp PV array will be installed in 2010
- The modular concept of the system ensures a flexible upgrading of the power sources and loads

6. Benefits for the Inhabitants

- > Electricity available 24 hours per day
- > Repair and servicing by a trained **local maintenance team**
- > (almost) independent from the mainland and fossil resources

Same quality of supply as main grid customers!

7. Summary of System Characteristics

Large-scale modular hybrid system

- > with standard components
- > loads & generation coupled by a medium voltage grid over several kilometers
- > Controlled by grid frequency and SOC
- > high reliability achieved by using a modular concept
- > easy service performed by local electricians

8. Summary of Field Experience

- > One of the first installations with PV, Wind and Hydro in one community grid system!
- > No problems with **critical loads**
- > 95 % electricity from renewable resources
- > Eigg Island as best practice and proof of concept:

Modular, large scale hybrid systems are already feasible!

Thank you for your attention !

Frank Thim, Stratis Tapanlis, SMA Solar Technology AG Steve Wade, Wind & Sun Ltd. John Booth, Eigg Island Electricity