Solar Inverters

FLX Series

Installation Guide / Installationsanleitung / Guide d’installation / Guía de instalacion / Guida all’installazione
<table>
<thead>
<tr>
<th>Language</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>English UK</td>
<td>4</td>
</tr>
<tr>
<td>Deutsch</td>
<td>51</td>
</tr>
<tr>
<td>Français</td>
<td>103</td>
</tr>
<tr>
<td>Español</td>
<td>151</td>
</tr>
<tr>
<td>Italiano</td>
<td>201</td>
</tr>
</tbody>
</table>
Safety and Conformity

Safety Message Types

The following symbols are used in this document:

DANGER
Indicates a potentially hazardous situation which could result in death.

WARNING
Indicates a potentially hazardous situation which could result in death or serious injury.

CAUTION
Indicates a potentially hazardous situation which could result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTICE
Indicates important information, including situations which may result in damage to equipment or property.

General Safety

All persons installing and servicing inverters must be:

- Trained and experienced in general safety rules for work on electrical equipment.
- Familiar with local requirements, rules and regulations for the installation.

NOTICE
Before installation
Check for damage to equipment and packaging. If in doubt, contact the supplier before commencing installation.

CAUTION
Installation
For optimum safety, follow the steps described in this document. Keep in mind that the inverter has 2 voltage carrying sides; the PV input and the AC grid.

WARNING
Disconnecting the inverter
Before starting work on the inverter, switch off AC at the mains switch and PV using the PV load switch. Ensure that the device cannot be unintentionally reconnected. Use a voltage tester to ensure that the unit is disconnected and voltage free. The inverter can still be charged with very high voltage at hazardous levels even when it is disconnected from AC grid and solar modules. Wait at least 8 minutes following disconnection from grid and PV panels before proceeding.

For safe disconnection of DC current, turn off the PV load switch (1).
CAUTION
Maintenance and modification
Only authorised personnel are permitted to modify the inverter. To ensure personal safety, use only original spare parts available from the supplier. If non-original spare parts are used, compliance with CE guidelines in respect of electrical safety, EMC and machine safety is not guaranteed.
The temperature of the cooling racks and components inside the inverter can exceed 70 ºC. Observe the danger of burn injury.

DC voltages up to 1000 V are present in a PV system even when the inverter is disconnected from the AC grid. Faults or inappropriate use may lead to electric arcing.

WARNING
PV modules generate voltage when exposed to light.

WARNING
Do not work on the inverter while disconnecting DC and AC.

The short-circuit current of the photovoltaic panels is only slightly higher than the maximum operating current and depends on the level of solar irradiation.

Conformity
Go to the download area at www.SMA.de, Approvals and Certifications, for information.
See also 5 Technical Data.

CE marking - This symbol certifies the conformity of the equipment with the requirements of the applicable EC directives
Contents

1 Introduction

1.1 Purpose of the Manual .. 6
1.2 Software Version ... 6
1.3 Spare Parts .. 7
1.4 Unpacking ... 7
1.5 Identification of Inverter 7
1.6 Installation Sequence .. 7
1.7 Return and Disposal
 1.7.1 Return ... 8
 1.7.2 Disposal .. 8
1.8 Overview of Installation Area 9

2 Installation

2.1 Environment and Clearances 10
2.2 Mounting the Mounting Plate 11
2.3 Mounting the Inverter ... 12
2.4 Removing the Inverter .. 13
2.5 Access to the Installation Area 13
2.6 AC Grid Connection ... 14
2.7 RS-485 or Ethernet Connections 15
2.8 Options .. 15
2.9 Closure .. 15
2.10 PV Connection
 2.10.1 Protection Rating for PV Modules 17

3 Initial Setup and Start

3.1 User Interface
 3.1.1 Operation Modes .. 18
 3.1.2 Security Level ... 18
 3.1.3 Preparation for Master Inverter 19
 3.1.4 Manual PV Configuration 19
3.2 Display
 3.2.1 Initial Setup via Display 20
 3.2.2 Turn PV Load Switch On 23
 3.2.3 Start-up ... 23
 3.2.4 Autotest Procedure 23
3.3 Web Interface
 3.3.1 Prepare for Setup .. 23
 3.3.3 Setup Wizard .. 24
 3.3.4 Web Interface ... 30
1 Introduction

1.1 Purpose of the Manual

The Installation Guide provides information required to install and commission the FLX series inverter.

Additional resources available:

- User Guide, for information required in monitoring and setup of the inverter, via the display or web interface.
- Design Guide, for information required for planning use of the inverter in a diversity of solar energy applications.
- Sensor Interface Option Installation Guide, for installation and commissioning of the sensor interface option.
- GSM Option Kit Installation Guide, for information required to install a GSM option, and set up data upload or messaging from the inverter.
- PLA Option Guide, for information required to install and set up PLA option for connecting radio ripple control receiver to the inverter.
- Fan Installation Instruction, for information required to replace a fan.

These documents are available from the download area at www.SMA.de, or from the supplier of the solar inverter.

Illustration 1.1 FLX Series Inverter

The FLX series inverters feature:

- IP65 enclosure
- PV load switch
- Sunclix connectors for PV input
- Manual access via the display, for configuration and monitoring of the inverter.
- Ancillary service functionalities. Refer to the FLX Series Design Guide for details.
- Access via web interface, for configuration and monitoring of the inverter.

1.2 Software Version

This manual is applicable for inverter software 2.05 and onwards. To see the software version, via the display or web interface (inverter level), go to [Status → Inverter → Serial no. and SW ver. → Inverter].

NOTICE

Software version at manual release is 2.05. Information about current software version is available at www.SMA.de.
1.3 Spare Parts

Contact SMA Solar Technology AG for information about spare parts, part numbers, and ordering.

1.4 Unpacking

Contents:

- Inverter
- Mounting plate
- Accessories bag, containing: 3 mounting screws, 2 cable glands, 2 rubber cups, 1 earthing screw, and 1 security label for France.
- 4 to 6 Sunclix mating parts depending on the number of MPPT for FLX Pro 5-17.
- Installation guide, booklet format
- Quick guide, poster format

The following items are not supplied:

- Security screws, M5 x 8-12, optional (not available as product from SMA Solar Technology AG)

1.5 Identification of Inverter

Type: FLX Pro 17

PV input: 1000 VDC, max. 3 x 13.5 A
250 - 800 VDC MPP

Output: 3P+ N+ PE - 230/400V, 50 Hz, Class I
S nom = 17 kVA, 3 x 25.6 A max
P nom @ cos(Phi)1 = 17.0 kW
P nom @ cos(Phi)0.95 = 18.2 kW
P nom @ cos(Phi)0.90 = 15.3 kW

Chassis: IP65, Temp. -25°C to 60°C

Illustration 1.2 Product Label

The product label on the side of the inverter shows:

- Inverter type
- Important specifications
- Serial number, located under the bar code, for inverter identification.

1.6 Installation Sequence

1. Pay special attention to 1.1 Safety Message Types.
2. Install the inverter according to 2.1 Environment and Clearances, 2.2 Mounting the Mounting Plate and 2.3 Mounting the Inverter.
3. Open the inverter according to 2.5 Access to the Installation Area.
4. Install AC according to 2.6 AC Grid Connection.
5. Install RS-485 or Ethernet, if used, according to 2.7 RS-485 or Ethernet Connections.
6. Install options, if any, according to the installation guide supplied with the option.
7. Close the inverter according to 2.5 Access to the Installation Area.
8. Install PV according to 2.10 PV Connection.
9. Turn on AC at the mains switch.
10. Set language, master mode, time, date, installed PV power, country, and grid code:
 - For setup via the web interface, refer to 3.3 Web Interface.
 - For setup via the display, refer to 3.2 Display.
11. Turn on PV by turning on the PV load switch. Refer to 2.10.1 Connection of PV.
12. Verify the installation by comparing with the autodetection result in the display, as described in 2.10 PV Connection.
13. The inverter is now in operation.

For installation and setup of multiple FLX Pro inverters in master-follower configuration:

- Perform steps 2–9 and 11 for each inverter.
- Perform step 10 on the inverter planned as master.
- Perform step 12.

1.7 Return and Disposal

When replacing an inverter, it can either be returned to your distributor, to SMA Solar Technology AG directly, or disposed of according to local and national regulations. SMA Solar Technology AG is committed to its policy of environmental responsibility, and therefore appeals to end users who are disposing of inverters to follow local environmental legislation and to seek safe, responsible means of disposal.
1.7.1 Return

For return to SMA Solar Technology AG, the inverter should always be in its original packaging or equivalent packaging. If the product is returned as a result of inverter failure, contact your SMA Solar Technology AG inverter supplier.

For return shipment and details, contact SMA Solar Technology AG hotline.

1.7.2 Disposal

In case of end of service life, the inverter can be returned to your distributor, to SMA Solar Technology AG directly, or disposed of in the respective country. The shipping to the distributor or SMA Solar Technology AG is paid by the sender. Recycling and disposal of the inverter must be done according to the rules and regulations applicable in the country of disposal. All the inverter packaging material is recyclable.
1.8 Overview of Installation Area

PELV (Safe to touch)

1. RS-485 interface
2. Option slot A (can be used for GSM option, optional sensor interface, or PLA option)
3. Ethernet interface
4. Option slot A (can be used for GSM option, optional sensor interface, or PLA option)

Live Part

5. PV connection area
6. Communication board
7. AC terminal

Other

8. Security screw position
9. PV load switch
10. Security screw position

Illustration 1.3 Overview of Installation Area
2 Installation

2.1 Environment and Clearances

Illustration 2.1 Avoid Constant Stream of Water

Illustration 2.2 Avoid Direct Sunlight

Illustration 2.3 Ensure Adequate Air Flow

Illustration 2.4 Ensure Adequate Air Flow

Illustration 2.5 Mount on Non-flammable Surface

Illustration 2.6 Mount Upright on Vertical Surface. Tilt of up to 10 degrees is permitted

Illustration 2.7 Prevent Dust and Ammonia Gases

NOTICE

When planning the installation site, ensure that inverter product and warning labels remain visible. For details, refer to 5 Technical Data.
2.2 Mounting the Mounting Plate

Illustration 2.8 Safe Clearances

NOTICE

Ensure 620 mm base clearance for adequate airflow.
2.3 Mounting the Inverter

CAUTION

For safe handling of the inverter, 2 people must carry the unit, or a suitable transport trolley must be used. Wear safety boots.

Procedure:

1. Lift the inverter. Locate the slots on the side of the mounting plate.
2. On the inverter, position the side screws against the mounting plate slots.

3. Push the inverter as shown so the side screws slide into the 2 lower slots, then the 2 upper slots. See Illustration 2.12 and Illustration 2.13.

4. Check that the 4 side screws sit securely in the mounting plate slots.

5. Release the inverter.

Anti-theft Protection (Optional)
To protect the inverter against theft, fasten as follows:

1. Use 2 security screws, M5 x 8-12 (not supplied).

2. Insert screws through the pre-drilled anti-theft holes (see Illustration 1.3), through the mounting plate to the wall.

3. Tighten screws.

2.4 Removing the Inverter

Procedure:

1. Perform removal in the reverse order of mounting.

2. Lift the inverter. 2 people must carry the unit.

3. With a firm grip at the base of the inverter, lift and slide the inverter out of the mounting plate slots.

4. Lift the inverter free of the mounting plate.

2.5 Access to the Installation Area

CAUTION
Observe ESD safety regulations. Discharge any electrostatic charge by touching the grounded enclosure, before handling any electronic component.

Procedure:

1. To open the cover, loosen the 2 lower front screws using a TX 20 screwdriver. The screws cannot fall out.

2. Lift the cover 180 degrees. A magnet holds the cover open.

3. To close the cover, lower it into place and fasten the 2 front screws.

Illustration 2.12 Slide into Slots

Illustration 2.13 Detail of Sliding into Slot

Illustration 2.14 Loosen Front Screws and Lift Cover
2.6 AC Grid Connection

Illustration 2.15 Installation Area

On the AC cable, strip insulation on all 5 wires. The PE wire must be longer than the mains and neutral wires. See Illustration 2.16.

Illustration 2.16 AC Cable Wire Strip

Illustration 2.17 AC Connection Area

L1, L2, L3	3 mains wires
N	Neutral wire
PE1	Primary protective earth
PE2	Secondary protective earth

1. Verify that the inverter rating matches the grid.
2. Ensure that main circuit breaker is released, and take precautions to prevent reconnection.
3. Open the front cover.
4. Insert the cable through the AC gland to the terminal blocks.
5. Connect the 3 mains wires (L1, L2, L3), the neutral wire (N) and the protective earth wire (PE) to the terminal block with the respective markings.
6. Optional: Make an extra PE connection at the secondary PE earthing points.
7. All wires must be properly fastened with the correct torque. See 5.6 Torque Specifications.

CAUTION
Check that all wiring is correct. Connecting a phase wire to the neutral terminal may permanently damage the inverter.

NOTICE
Tighten all screws and glands thoroughly.
NOTICE

This product may generate DC current exceeding 6 mA, into the external grounded PE wire. Where a residual current-operated protective (RCD) or monitoring (RCM) device is used for protection in case of direct or indirect contact, only an RCD or RCM of Type B is allowed on the supply side of this product. When applying an RCD it must have a 300 mA sensitivity to avoid tripping. IT systems are not supported.

NOTICE

For fuse and RCD information, refer to 5 Technical Data.

2.7 RS-485 or Ethernet Connections

Before connecting RS-485 or Ethernet cables, refer to requirements in 5.9 RS-485 and Ethernet Connections.

Procedure:

1. Do not remove the RJ-45 connector.
2. Guide the cables through the base of the inverter via cable glands. See Illustration 2.18.
3. Plug into the RS-485 or Ethernet connector.
4. Fasten cables with cable ties to ensure a durable connection over time. See Illustration 2.19.

NOTICE

Tighten all screws and glands thoroughly.

2.8 Options

To install options, refer to the respective option installation guide.

NOTICE

Tighten all screws and glands thoroughly.

2.9 Closure

1. Close the cover of the inverter installation area. Fasten the 2 front screws.
2. Turn on AC power.
2.10 PV Connection

WARNING

PV modules generate voltage when exposed to light. Do NOT connect PV to earth.

Illustration 2.20 Do Not Connect PV to Earth

Use a suitable voltmeter that can measure up to 1000 V DC.

1. Mount Sunclix connectors (not supplied) on the PV cables, according to Illustration 2.21.

2. Verify the polarity and maximum voltage of the PV arrays by measuring the PV open-circuit voltage. See Illustration 2.21.
 - The PV open-circuit voltage must not exceed 1000 V DC. The inverter is protected against reversed polarity and will not generate power until the polarity is correct. Reversed polarity damages neither the inverter nor the connectors.

Illustration 2.21 Correct Polarity: Mounting Sunclix Connector on Cable

1. Measure the DC voltage between the positive terminal of the PV array and earth (or the green/yellow PE cable).
 - The voltage measured should approximate zero. If the voltage is constant and not zero, there is an insulation failure somewhere in the PV array.

2. Locate and fix the failure before continuing.

3. Repeat this procedure for all arrays. Uneven distribution of input power on the PV inputs is permitted, if:
 - The individual input is not overloaded. The maximum permissible load per input is 8000 W.
 - The maximum short-circuit current of the PV modules at STC (Standard Test Conditions) does not exceed 13.5 A per input.
2.10.1 Protection Rating for PV Modules

The inverter must only be operated with PV modules of protection class II, compliant to IEC 61730, application class A. Module voltage rating must be more than 480 V (typical module voltage rating is 1000 V). This does not prevent the use of strings with lower operating voltage. Only connect PV modules to the inverter. Other energy sources are not allowed.

Illustration 2.22 DC Connection Area

1. On the inverter turn the PV load switch into off position.
2. Connect the PV cables using Sunclix connectors. Ensure correct polarity, see Illustration 2.21.
 - Attach Sunclix mating part to PV cable.
 - Connect to each PV input in the PV connection area with a 'click'.

Illustration 2.23 Connect to PV Input
3 Initial Setup and Start

3.1 User Interface

The user interface comprises:

- Local display. Enables manual setup of the inverter.
- Web interface. Enables access to multiple inverters via Ethernet.

Choose an interface to set up and start the inverter, either via

- Display
 3.2 Display
 3.2.1 Initial Setup via Display

or

- Web interface
 3.3 Web Interface
 3.3.4 Web Interface

Do not touch the other interface during the setup and start-up processes.

For access and menu information, refer to the FLX Series User Guide.

3.1.1 Operation Modes

The inverter has 4 operation modes, indicated by LEDs. For more information on the LEDs, refer to the FLX Series User Guide.

Off grid (LEDs off)
When no power has been delivered to the AC grid for more than 10 minutes, the inverter disconnects from the grid and shuts down. 'Off grid - standby' is the default night mode. 'Off grid - sleep' is the night mode for lowest energy consumption.

- Off grid - standby mode (LEDs off)
The inverter is disconnected from grid. User and communication interfaces remain powered for communication purposes.

- Off grid - sleep mode (LEDs off)
The inverter is disconnected from grid. User, communication, and option interfaces are powered down.

Connecting (Green LED flashing)
The inverter starts up when the PV input voltage reaches 250 V. The inverter performs a series of internal self-tests, including PV autodetection and measurement of the resistance between the PV arrays and earth. Meanwhile, it also monitors the grid parameters. When the grid parameters have been within the specifications for the required amount of time (depends on grid code), the inverter starts to energise the grid.

On grid (Green LED on)
The inverter is connected to the grid and energises the grid. The inverter disconnects when:

- it detects abnormal grid conditions (dependent on grid code), or
- an internal event occurs, or
- insufficient PV power is available (no power is supplied to the grid for 10 minutes).

The inverter then enters connecting mode or off grid mode.

Fail Safe (Red LED flashing)
If the inverter detects an error in its circuits during the self-test (in connecting mode) or during operation, the inverter goes into fail safe mode, disconnecting from grid. The inverter will remain in fail safe mode until power has been absent for a minimum of 10 minutes, or the inverter has been shut down completely (AC+PV).

3.1.2 Security Level

3 predefined security levels filter user access to menus and options.

Security levels:

- Level [0]: General access. No password is required.
- Level [1]: Installer or service technician. Password access required.
- Level [2]: Installer or service technician. Password extended access required.

Throughout the manual, a [0], [1] or [2] inserted after the menu item indicates the minimum security level required for access.

When logged on to the web interface as Admin, access is at security level [0].

Access to levels [1] and [2] requires a service logon, comprising a user ID and a password.
The service logon provides direct access to a specific security level for the duration of the current day.

- Obtain the service logon from SMA Solar Technology AG.
- Enter the logon via the display, or the web interface logon dialog.
- When the service task is complete, log off at [Setup → Security].
- The inverter automatically logs the user off after 10 minutes of inactivity.

Security levels are similar on the display and the web interface.
A security level grants access to all menu items at the same level as well as all menu items of a lower security level.

3.1.3 Preparation for Master Inverter

The master mode feature allows 1 inverter to be appointed as master inverter for the inverter network. The master inverter accesses the other inverters in the network, enabling:

- Settings and data replication to the rest of the network, enabling easy commissioning and data management.
- Control of power at plant level (control of ancillary services).
- Data retrieval from the network, for graphical display on the web interface, upload to a data warehouse, or export to a PC.

Before enabling master mode, ensure that the following requirements are met:

- No other master inverters are present in the network.
- Ethernet connection from PC to inverter RJ-45 interface, using a patch cable (network cable cat5e, crossed or straight through). See 2.7 RS-485 or Ethernet Connections.
- Installed sensor interface option, with sensors installed, when sensor data are required.
- Location closest to the router, in a daisy chain network topology.

After enabling master mode, perform a network scan to verify that all follower inverters are connected to the master inverter. To initiate the scan, go to [Setup → Inverter details → Master mode → Network].

3.1.4 Manual PV Configuration

Set up the inverter for manual PV configuration:

- Via the display, security level 1, at [Setup → Setup details → PV configuration].
- Via the web interface, security level 0, at [Inverter level: Setup → Setup details → PV configuration].

When the inverter is set to manual PV configuration, the autodetection is subsequently overridden.

To set the configuration manually via the display:

1. Turn on AC to start the inverter.
2. Obtain the installer password from the distributor. Go to [Setup → Security → Password], and enter the password.
3. Press [Back]. Use the arrows to navigate to [Setup → Setup details → PV configuration].
5. Set up the PV input configuration to match the wiring, at: [Setup → Setup details → PV configuration].

- PV input 1: Individual, Parallel or Off
- PV input 2: Individual, Parallel or Off
- PV input 3: Individual, Parallel or Off

3.2 Display

NOTICE
The display activates up to 10 seconds after power up.

The integrated display on the inverter front gives the user access to information about the PV system and the inverter.

The display has 2 modes:

1. **Normal**: The display is in use.
2. **Power saving**: After 10 minutes of display inactivity the back light of the display turns off to save power. Reactivate the display by pressing any key.
The menu structure is divided into 4 main sections:

1. **View** - presents a short list of information, read only.
2. **Status** - shows inverter parameter readings, read only.
3. **Log** - shows logged data.
4. **Setup** - shows configurable parameters, read/write.

See the following sections for more detailed information.

3.2.1 Initial Setup via Display

The inverter is shipped with a predefined set of settings for different grids. All grid-specific limits are stored in the inverter and must be selected at installation. It is always possible to see the applied grid limits in the display.

After installation, check all cables and then close the inverter.

Turn on AC at the mains switch.

IP address can be found in the display during commissioning.

When prompted by the display select language. This selection has no influence on the operating parameters of the inverter and is not a grid code selection.

![Select language](image)

The language is set to English at initial start-up. To change this setting press the [OK] button. Press [*] to scroll down through the languages. Select language by pressing [OK].

The contrast level of the display can be altered by pressing the arrow up/down button while holding down the F1 button.
To use the default language (English) simply press the [OK] button twice to select and accept.

Notice

To enable master mode go to the Inverter details menu [Setup → Inverter details → Master mode] and set master mode to Enabled.

Set the time and date accurately. The inverter uses this information for logging. If an incorrect time/date is accidentally set, correct it immediately in the set date and time menu [Setup → Inverter details → Set date and time].

Set time as prompted by the display. Press [OK] to select number. Press [▲] to scroll up through the numbers. Select by pressing [OK].

The clock is 24-hour format. The inverter accounts for daylight saving automatically.

Enter the amount of installed PV power for each of the PV inputs. When a group of PV inputs are connected in
parallel, enter average installed PV power for each PV input, as shown in the examples.

<table>
<thead>
<tr>
<th>PV String Configuration</th>
<th>Enter this value for “Installed PV power”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1: PV1, PV2 and PV3 are each set to individual mode. Nominal PV power installed:</td>
<td>PV 1: 6000 W PV 2: 6000 W PV 3: 3000 W</td>
</tr>
<tr>
<td>Example 2: PV1 and PV2 are set to parallel mode and have a total of 10 kW PV power installed. PV3 is set to individual mode and has nominal 4 kW PV power.</td>
<td>PV 1: 5000 W PV 2: 5000 W PV 3: 4000 W</td>
</tr>
<tr>
<td>Example 3: PV1 and PV2 are set to parallel mode and have a total of 11 kW PV power installed. PV3 is set to [Off] and has no PV installed.</td>
<td>PV 1: 5500 W PV 2: 5500 W PV 3: 0 W</td>
</tr>
</tbody>
</table>

Table 3.2 Examples of Installed PV Power

The display will now show ‘Select country’. The setting is ‘undefined’ at initial start-up. Press [▼] to scroll down through the list of settings. To select the desired setting, press [OK].

The display will now show ‘Select grid code’. The grid code is set to ‘undefined’ at initial start-up. To select the grid code, press [OK]. Press [▼] to scroll down through the list. Select the grid code for the installation by pressing [OK]. It is very important to choose the correct grid code.

To confirm, select the grid code again and press [OK]. The settings for the chosen grid code have now been activated.

WARNING
Correct selection of grid code is essential to comply with local and national standards.
NOTICE
If the 2 grid code selections do not match, they will be cancelled and it will be necessary to repeat this step. If an incorrect grid code is accidentally accepted at the first selection, simply accept the “Grid: Undefined” in the confirm grid code screen. This cancels the grid code selection and enables a new selection.

NOTICE
Access on security level 2 is granted for 5 hours after setup completion. Logout must be performed before leaving the site. If an incorrect grid code is selected twice, it can be changed within the 5 hours. Access on a higher level is possible by locking the configuration and logging on again using a 24-hour password. Only authorised personnel is allowed to configure the inverter. Changes will be logged and SMA Solar Technology AG accepts no liability for damage caused by changing the inverter configuration.

3.2.2 Turn PV Load Switch On

Illustration 3.10 Turn the PV Load Switch On

3.2.3 Start-up

The inverter starts automatically if sufficient solar irradiation is available. The start-up will take a few minutes. During this period, the inverter performs a self-test.

NOTICE
The inverter is protected against reversed polarity. The inverter does not generate power until any reversed polarity is corrected.

3.2.4 Autotest Procedure

For certain grid codes, an automatic test of the inverter can be initialised by activating the inverter autotest procedure:

- Via the display, go to [Setup → Autotest] and press [OK].

3.3 Web Interface

These instructions describe the web interface, which facilitates remote access to the inverter. Refer to the download area at www.SMA.de for the newest instructions.

For all text entries, the software supports characters compatible with Unicode.

For inverter name, no spaces are permitted.

For plant, group and inverter name, only the following characters are supported:

<table>
<thead>
<tr>
<th>Letters</th>
<th>abcdefghijklmnopqrstuvwxyz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital letters</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
</tr>
<tr>
<td>Numbers</td>
<td>0123456789</td>
</tr>
<tr>
<td>Special characters</td>
<td>- _</td>
</tr>
</tbody>
</table>

3.3.1 Prepare for Setup

Ensure that the following items are ready before commencing setup:

- Master inverter is designated and prepared, see 3.1.3 Preparation for Master Inverter.
- Ethernet connection from PC to inverter is established, see also 2.7 RS-485 or Ethernet Connections.

3.3.2 Initial Setup via Web Interface

CAUTION
Change the Web Server logon and password of the master inverter immediately for optimal security when connecting to the Internet. To change the password go to [Setup → Web Server → Admin].

Setup Sequence

1. Ensure that the master inverter is designated and prepared, see 3.1.3 Preparation for Master Inverter.
2. On the PC, wait until Windows reports limited connectivity (if no DHCP is present). Open the Internet browser and ensure that pop-ups are enabled.
3. Type 1 of the following options in the address field:
For Windows XP and older Windows versions: http://invertername, where 'invertername' is the final 10 digits of the serial number.

For Windows 7 and newer Windows versions: http://IP address. The IP address can be found in the display.

It is not possible to use the installation wizard with Windows 7 and 8.

3.3.3 Setup Wizard

Step 1 of 8: Display language
Select display language.

• The default language is English.

NOTICE
This selection defines the language in the display, not the grid code.

Setup Wizard: Step 1 of 8
Select the language to be used by the inverter

Display language: [English]

[Next]

Illustration 3.11 Step 1 of 8: Display Language

To change the language setting later, go to [Setup → Setup Details].

Step 2 of 8: Master setting
To set up a master inverter, click on 'Set as master'.

• A scan runs to identify inverters in the network.

• A pop-up window shows the inverters successfully identified.

Click [OK] to confirm that the correct number of inverters has been found.
Setup Wizard: Step 2 of 8

Configure the inverter to be the master if one is not already present in the network.

(set as master)

(a network scan will begin automatically; please wait for it to finish and then verify the list of found inverters)

Previous Next

Illustration 3.12 Step 2 of 8: Master Setting

To change this setting later, go to [Inverter level: Setup → Inverter details].

Step 3 of 8: Time and date

Enter:

- Time in 24-hour format
- Date
- Time zone

Accuracy is important, because date and time are used for logging purposes. Adjustment for daylight savings is automatic.

Setup Wizard: Step 3 of 8

Set the time and date of the inverter

Time (hh:mm:ss) $9:31:31$
Date (YYYY-MM-DD) $2012-11-19$
TimeZone GMT +0

Previous Next

Illustration 3.13 Step 3 of 8: Time and Date

To change these settings later, go to [Inverter level: Setup → Set date and time].

Step 4 of 8: Installed power

For each PV input, enter installed PV power.

The installed PV power values are used to calculate performance ratio. For more information refer to the FLX Series Design Guide.
CAUTION
Incorrect setting can have serious consequences for production efficiency.

Setup Wizard: Step 4 of 8
Configure the amount of installed PV power connected to each of the inverters PV inputs

<table>
<thead>
<tr>
<th>PV1 array power</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV2 array power</td>
<td>W</td>
</tr>
<tr>
<td>PV3 array power</td>
<td>W</td>
</tr>
</tbody>
</table>

Illustration 3.14 Step 4 of 8: Installed Power

To change the installed power, go to [Inverter level: Setup → Calibration, PV Array].

Step 5 of 8: Country of Installation
Select the setting to match the location of the installation.

CAUTION
Correct selection is essential to comply with local and national standards.

Setup Wizard: Step 5 of 8
Select the country setting to be used by the inverter

Country: Germany

Illustration 3.15 Step 5 of 8: Country of Installation

Step 6 of 8: Grid code
Select the grid code to match the location of the installation.
The default setting is [undefined].

Select the grid code again, to confirm.

- The setting is activated immediately.

CAUTION
Correct selection is essential to comply with local and national standards.

Setup Wizard: Step 6 of 8

Select the specific grid to be used by the inverter

Country: Germany

Grid: Medium voltage

Grid: Medium voltage (Re-select the grid code)

⚠️ It is important to enter the correct grid code setting.

Detailed description of selectable grid codes: Show Grid List

Illustration 3.16 Step 6 of 8: Grid Code

NOTICE
If the initial and confirmation settings are different,

- grid code selection is cancelled, and
- the wizard recommences step 5.

If initial and confirmation settings match, but are incorrect, contact service.

Step 7 of 8: Replication
This step is available for a master inverter with followers connected. To replicate the settings from steps 1–6 to other inverters in the same network:

- Select inverters.
- Click [Replicate].
NOTICE

When the PV configuration, installed PV power and PV array area of follower inverters in the network differ from that of the master, do not replicate. Set up the follower inverters individually.

Setup Wizard: Step 7 of 8

Replicate the settings of the master inverter to the selected followers

✓ All Name
✓ Slave Configured
✓ abc123456 (Master) Configured

[Replicate]

[Next]

Illustration 3.17 Step 7 of 8: Replication

Step 8 of 8: Inverter start-up
The wizard displays an overview of the setup configuration.
Click on [Finish] to start up the inverter. Start-up will commence when solar irradiation is sufficient.
The start-up sequence, including self-test, takes a few minutes.
Setup Wizard: Step 8 of 8

The inverter is now configured and ready to use!

Configuration overview:
Language: English
Country: Germany
Grid: Medium voltage

Time: 09:36:37
Date: 2012-11-19

PV 1 array power: 6000 W
PV 2 array power: 6000 W
PV 3 array power: 6000 W

Finish

Illustration 3.18 Step 8 of 8: Inverter start-up

To change the setup later, access the inverter via the web interface or the display, at inverter level.

- To change the name of the inverter, go to [Inverter level: Setup → Inverter details].
- To enable master mode, go to [Inverter level: Setup → Inverter details].
3.3.4 Web Interface

The web interface overview is structured as follows.

1. **Plant name**: Displays the current plant name:
 - Click on the plant name to display the plant view.
 - Change the plant name at [Setup → Plant details].

2. **Group menu**: Displays groups of inverters:
 - Inverters join group 1 by default.
 - Click on a group name to display the group view, and a list of inverters in the group.
 - Change the group name via [Setup → Inverter details] in the inverter view.

3. **Group members**: Displays the inverter names in the group currently selected. The default inverter name is based on the serial number.
 - Click on an inverter name to display the inverter view.
 - Change the name of the inverter via [Setup → Inverter details] in the inverter view.

4. **Main menu**: This menu corresponds to the inverter display main menu.

5. **Submenu**: The submenu corresponds to the main menu item currently selected. All submenu items belonging to a particular main menu item are displayed here.

6. **Content area**: The main menu and submenus of the web interface are identical to the menus in the inverter display. The submenu content displayed here corresponds to the submenu selected: [Overview]. On some pages, a horizontal menu is provided for improved readability.

7. **Footer**: Options in the footer bar:
 - **Language**: Opens a pop-up window. Click on the country flag to change the language of the web interface to the desired language for the active session.
 - **Contact**: Opens a pop-up window, which displays SMA Solar Technology AG contact information.
 - **Logout**: Opens the login/logout dialog box.
 - **Security level**: Displays the current security level as explained in the section Security Levels.
The content of the main menu changes depending on which view is currently selected: the plant, a group of inverters, or an individual inverter.

3.3.5 Plant, Group and Inverter Views

The overview screens for plant view, group view, and inverter view display the same overall status information.

Illustration 3.20 Overall Plant Status
<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall plant status</td>
<td>-</td>
<td>x</td>
<td>Red: Plant PR <50%, or: Any inverter in the network - in fail safe mode, or - missing from the scan list, no contact with the master. Yellow: Any inverter in the network - with PR <70%, or - in Connecting or Off grid mode Green: Plant PR ≥70%, and - all inverters with PR ≥70%, and - all inverters in On grid mode</td>
</tr>
<tr>
<td>Current production</td>
<td>kW</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Yield today</td>
<td>kWh</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Total revenue</td>
<td>Euro</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Total CO2 saving</td>
<td>kg</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Performance ratio</td>
<td>%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Total yield</td>
<td>kWh</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Power limit adjustment</td>
<td>%</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Table 3.3 Information Displayed in Plant View, Overview Screen

NOTICE

To calculate performance ratio PR, an irradiation sensor is required, see [Setup → Calibration].

3.3.6 Autotest Procedure

For certain grid codes, an automatic test of the inverter can be initialised by activating the inverter autotest procedure:

- Via the web interface, go to [Inverter level: Setup → Setup details → Autotest] and click on [Start → Test].
4 Service

4.1 Troubleshooting

This guide provides tables showing messages appearing in the inverter display, known as events. The tables contain descriptions as well as which actions to take, when an event arises. For the full event list, refer to the FLX Series User Guide.

To view events, go to the Log menu and enter the Eventlog menu. The latest event registered by the inverter, as well as a list of the 20 most recent events, is shown here. When the inverter enters the On grid mode, the most recent event is cleared and is shown as 0.

The event code is made up of 2 elements: the group classifier and the event ID. The group classifier describes the general type of the event, while the event ID is used to identify the specific event.

Table 4.1 is an overview of how the tables of inverter events are constructed and how to use them.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>ID Status message</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Tpower_high.</td>
<td>The internal temperature of the inverter is too high.</td>
<td>Check the inverter is not covered and that the ventilation duct is not blocked. If not, call installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

Event Type	Indicates whether the event relates to grid, PV, internal or fail safe issues.
ID	The specific event ID.
Display	Text shown in display.
Description	Description of the event.
Action	Description of which action to take prior to contacting any other parties.
DNO	If the prescribed action has not identified the malfunction, contact the DNO for further assistance.
Hotline	If the prescribed action has not identified the malfunction, contact the inverter hotline for further assistance.
PV	If the prescribed action has not identified the malfunction, contact the PV supplier for further assistance.

Table 4.1 How to Read the Event Tables

Grid-related Events

<table>
<thead>
<tr>
<th>ID Status message</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–6</td>
<td>Grid voltage too low.</td>
<td>Call the installer and inform about the grid-phase voltage. Check voltage and AC installation, if the voltage is zero check the fuses.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7–9</td>
<td>Grid voltage average over 10 minutes too high.</td>
<td>Call the installer and inform about the grid-phase voltage. Check that the installation is correct according to the installation guide. If so, then increase the mean voltage limit according to section Functional Safety.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10–15</td>
<td>Grid voltage too high.</td>
<td>Call the installer and inform about the grid-phase voltage. Check voltage and AC installation.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16–18</td>
<td>The inverter has detected a voltage peak on the grid.</td>
<td>Call the installer and inform about the grid-phase voltage. Check voltage and AC installation.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19–24</td>
<td>Grid frequency too low or too high.</td>
<td>Call the installer and inform about the grid frequency.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25–27</td>
<td>Loss of mains, Phase-to-phase voltages too low.</td>
<td>Call the installer and inform about the voltage on all three phases. Check the phase-to-phase voltages and the AC installation.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28–30</td>
<td>Loss of mains, ROCOF out of range.</td>
<td>If the event reoccurs several times each day, contact the DNO.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31–33</td>
<td>DC grid current too high.</td>
<td>For occurrence several times daily, contact installer. Installer: Perform on-site grid analysis.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>
Service

<table>
<thead>
<tr>
<th>ID</th>
<th>Status message</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>34–37</td>
<td>Residual Current Monitoring Unit (RCMU) has measured an excessive current.</td>
<td>Turn both DC and AC off and wait until the display turns off. Then turn on DC and AC and observe if the event reoccurs. If the event reoccurs, call the installer. Installer: Visual inspection of all PV cables and modules.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>AC grid not OK</td>
<td>The AC grid has been out of range for more than 10 minutes (frequency and/or voltage).</td>
<td>Call the installer and inform about Frequency, SW version and Grid code setting Installer: Check the AC installation.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>41–43</td>
<td>The inverter has detected that grid voltage was below a certain level.</td>
<td>If this event is reported several times each day, contact the installer. Installer: Perform on-site grid analysis.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PLA below threshold</td>
<td>The inverter disconnects from grid if PLA is below 3% of nominal power.</td>
<td>Contact the DNO and obtain status on active power reduction (PLA).</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48–53</td>
<td>Grid frequency too low or too high</td>
<td>Call the installer and inform about the grid frequency. Check the AC installation.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54–56</td>
<td>DC grid current too high (stage 2).</td>
<td>For occurrence several times daily, contact installer. Installer: Perform on-site grid analysis.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>A grid event was detected and inverter was stopped by the redundant safety circuit.</td>
<td>A grid event was detected and inverter was stopped by the redundant safety circuit. Check the event log. If the majority of entries are of type 246, call the service department. Otherwise wait 24 hours and check again.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 Grid-related Events

PV-related Events

<table>
<thead>
<tr>
<th>ID</th>
<th>Status message</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–102</td>
<td>PV negative</td>
<td>Input current is negative, polarity incorrect.</td>
<td>Call the installer. Installer: Check polarity, if correct, call service.</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>103–105</td>
<td>PV current is too high/waiting.</td>
<td>Too many PV modules connected in parallel. Should only appear on newly installed systems.</td>
<td>Call the installer. Installer: Check no. of strings in parallel and current ratings. Has the current limit been exceeded? Has the inverter derated on PV current? Reconnect strings in parallel, possibly install a second inverter.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>112–114</td>
<td>PV config fault</td>
<td>The resistance between ground and PV is too low for the inverter to start up. This will force the inverter to make a new measurement after 10 minutes have passed.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>115</td>
<td>PV ISO too low</td>
<td>The resistance between ground and PV is too low for the inverter to start up. This will force the inverter to make a new measurement after 10 minutes have passed.</td>
<td>Make a visual inspection of all PV cables and modules for correct installation according to the installation guide. The event could indicate that the PE connection is missing.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>116–118</td>
<td>PV wrong polarity</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>121–123, 125</td>
<td>PV ISO low PV1, PV2, PV3, multiple (related to 115)</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>PV voltage too high/waiting</td>
<td>PV voltage is too high.</td>
<td>Check that installation and layout correspond to recommendations in the manuals.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 4.3 PV-related Events
Internal Events

<table>
<thead>
<tr>
<th>ID</th>
<th>Status message</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201–208</td>
<td></td>
<td>The internal temperature of the inverter is too high.</td>
<td>Check the inverter is not covered and that the ventilation duct is not blocked. If not, call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>209, 210</td>
<td></td>
<td>Voltage on DC bus is too high.</td>
<td>Reset the inverter by disconnecting DC and AC, using the switches. If the event is repeated, call the installer. Installer: Check the maximum PV voltage using the display to see if it is above the limits.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>211</td>
<td>Fan rpm low</td>
<td>Fan speed is too low.</td>
<td>Is the inverter fan blocked? Yes: Clean the fan, No: Call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>212</td>
<td>DC bus balance timeout</td>
<td>Inverter unable to balance DC bus.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>213–215</td>
<td></td>
<td>Internal error Voltage measured before and after the relay differs by more than 20 V.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>216–221</td>
<td></td>
<td>Current measured on AC side is too high.</td>
<td>Call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>224</td>
<td>RCMU over range</td>
<td>A wire is broken in the RCMU.</td>
<td>Call the installer. If self-test does not complete successfully, call service partner.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>225–240</td>
<td></td>
<td>Failure in Memory/ EEPROM.</td>
<td>Restart the inverter. If event persists, call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>241, 242, 249</td>
<td></td>
<td>Internal communication error.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>243, 244</td>
<td></td>
<td>Internal error.</td>
<td>Call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>247</td>
<td>FSP plausibility fault</td>
<td>A plausibility fault has occurred in the functional safety processor.</td>
<td>Check event log for other grid events (1-55) and follow the instructions for these events. If the event persists, call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>248, 251</td>
<td>Self test failed FSP fail safe</td>
<td>The self-test has failed.</td>
<td>Call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>252–254</td>
<td></td>
<td>Current measured on AC side is too high.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>255–257</td>
<td></td>
<td>Islanding protection trip.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>The resistance between ground and PV is too low for the inverter to start up. This will force the inverter to make a new measurement after 10 minutes have passed.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>261-262</td>
<td>PV current measurements failed.</td>
<td>Call the installer. Installer: Call service.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 4.4 Internal Events
Events Caused by the Self-test

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-271</td>
<td>Measurement circuit test failed.</td>
<td>Restart the inverter. If event persists, call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>352</td>
<td>RCMU self-test failed.</td>
<td>Call the installer.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>353</td>
<td>Current sensor test failed.</td>
<td>Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>356-363</td>
<td>Transistor and relay test failed, or inverter relay has failed (contact assumed welded).</td>
<td></td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>364</td>
<td>Neutral connection is damaged or missing.</td>
<td>Call the installer. Installer: Check AC installation for failures on neutral connection. Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>365</td>
<td>Earth wire failed.</td>
<td>Call the installer. Installer: Call service.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4.5 Events Caused by the Self-test

4.2 Maintenance

Normally, the inverter needs no maintenance or calibration.

Ensure that the heat sink at the rear of the inverter is not covered.

Clean the contacts of the PV load switch once per year. Clean by cycling the switch to on and off positions 10 times. The PV load switch is located at the base of the inverter.

For correct operation and long service life, ensure free air circulation
- around the heat sink at the top and side of the inverter where the air exhausts, and
- to the fan at the inverter base.

To clear obstructions, clean using pressurised air, a soft cloth, or a brush.

⚠️ WARNING

Temperature of the heat sink can exceed 70 °C.
Technical Data

5.1 Specifications

5.1.1 Inverter Specifications

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Parameter</th>
<th>FLX series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[S]</td>
<td>Rated apparent power</td>
<td>5 kVA</td>
</tr>
<tr>
<td>P<sub>ac,r</sub></td>
<td>Rated active power<sup>1)</sup></td>
<td>5 kW</td>
</tr>
<tr>
<td></td>
<td>Active power at cos(phi)=0.95</td>
<td>4.75 kW</td>
</tr>
<tr>
<td></td>
<td>Active power at cos(phi)=0.90</td>
<td>4.5 kW</td>
</tr>
<tr>
<td></td>
<td>Reactive power range</td>
<td>0 - 3.0 kVAR</td>
</tr>
<tr>
<td>V<sub>ac,r</sub></td>
<td>Nominal AC voltage (AC voltage range)</td>
<td>3P+N+PE - 230/400 V (+/- 20 %)</td>
</tr>
<tr>
<td></td>
<td>Rated current AC</td>
<td>3 x 7.2 A</td>
</tr>
<tr>
<td></td>
<td>Max. current AC</td>
<td>3 x 7.5 A</td>
</tr>
<tr>
<td></td>
<td>AC current distortion (THD at nominal output power, %)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Inrush current</td>
<td>9.5 A / 10 ms</td>
</tr>
<tr>
<td>cosphi<sub>ac,r</sub></td>
<td>Power factor at 100% load</td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>Controlled power factor range</td>
<td>0.8 over-excited</td>
</tr>
<tr>
<td></td>
<td>Standby consumption</td>
<td>2.7 W</td>
</tr>
<tr>
<td>f<sub>r</sub></td>
<td>Nominal grid frequency (range)</td>
<td>50 (±5 Hz)</td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. PV input power per MPPT</td>
<td>5.2 kW</td>
</tr>
<tr>
<td></td>
<td>Nominal power DC</td>
<td>5.2 kW</td>
</tr>
<tr>
<td>V<sub>dc,r</sub></td>
<td>Nominal voltage DC</td>
<td>715 V</td>
</tr>
<tr>
<td>V<sub>dc,min</sub>/V<sub>dc,min</sub> - MPP voltage - active tracking<sup>2)</sup> / rated power<sup>3)</sup></td>
<td>220/250 - 800 V</td>
<td>220/260 - 800 V</td>
</tr>
<tr>
<td>MPP efficiency, static</td>
<td>99.9%</td>
<td></td>
</tr>
<tr>
<td>MPP efficiency, dynamic</td>
<td>99.7%</td>
<td></td>
</tr>
<tr>
<td>V<sub>dc,max</sub></td>
<td>Max. DC voltage</td>
<td>1000 V</td>
</tr>
<tr>
<td>V<sub>dc,start</sub></td>
<td>Turn on voltage DC</td>
<td>250 V</td>
</tr>
<tr>
<td>V<sub>dc,min</sub></td>
<td>Turn off voltage DC</td>
<td>220 V</td>
</tr>
<tr>
<td>I<sub>dc,max</sub></td>
<td>Max. MPP current</td>
<td>12 A per PV input</td>
</tr>
</tbody>
</table>
Technical Data

Nomenclature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLX series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. short-circuit current DC (at STC)</td>
<td>13.5 A per PV input</td>
</tr>
<tr>
<td>Min. on grid power</td>
<td>20 W</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td>Max. efficiency</td>
<td>97.9%</td>
</tr>
<tr>
<td>Euro efficiency, V at dc,r</td>
<td>96.1%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Dimensions (H, W, D), inverter / incl. packaging</td>
<td>667 x 500 x 233 mm / 774 x 570 x 356 mm</td>
</tr>
<tr>
<td>Mounting recommendation</td>
<td>Mounting plate</td>
</tr>
<tr>
<td>Weight, inverter / incl. packaging</td>
<td>38 kg / 44 kg</td>
</tr>
<tr>
<td>Acoustic noise level</td>
<td>-</td>
</tr>
<tr>
<td>MPP trackers</td>
<td>2</td>
</tr>
<tr>
<td>Operation temperature range</td>
<td>-25..60 °C</td>
</tr>
<tr>
<td>Nom. temperature range</td>
<td>-25..45 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25..60 °C</td>
</tr>
<tr>
<td>Overload operation</td>
<td>Change of operating point</td>
</tr>
<tr>
<td>Overvoltage categories</td>
<td>Grid: OVC III</td>
</tr>
<tr>
<td></td>
<td>PV: OVC II</td>
</tr>
</tbody>
</table>

Table 5.1 Specifications

1) At rated grid voltage (V_{ac,r}), Cos(phi)=1.
2) To utilise the full range, asymmetrical layouts must be considered including start-up voltage for at least 1 string. Achieving nominal power will depend on configuration.
3) SPL (Sound Pressure Level) at 1 m under normal operating conditions. Measured at 25 °C.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Parameter</th>
<th>FLX series</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>[S] Rated apparent power</td>
<td>10 kVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5 kVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 kVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 kVA</td>
</tr>
<tr>
<td></td>
<td>P_{ac,r} Rated active power</td>
<td>10 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 kW</td>
</tr>
<tr>
<td></td>
<td>Active power at cos(phi)=0.95</td>
<td>9.5 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.9 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.3 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.2 kW</td>
</tr>
<tr>
<td></td>
<td>Active power at cos(phi)=0.90</td>
<td>9.0 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.3 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.5 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.3 kW</td>
</tr>
<tr>
<td></td>
<td>Reactive power range</td>
<td>0 - 6.0 kVAr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-7.5 kVAr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-9.0 kVAr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-10.2 kVAr</td>
</tr>
<tr>
<td></td>
<td>V_{ac,r} Nominal AC voltage (AC voltage range)</td>
<td>3P+N+PE - 230/400 V (+/- 20 %)</td>
</tr>
<tr>
<td></td>
<td>Rated current AC</td>
<td>3 x 14.5 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 x 18.2 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 x 21.7 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 x 24.7 A</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>Parameter</td>
<td>FLX series</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>Iacmax</td>
<td>Max. current AC</td>
<td>3 x 15.1 A</td>
</tr>
<tr>
<td></td>
<td>AC current distortion (THD at nominal output power, %)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Inrush current</td>
<td>0.5 A / 10 ms</td>
</tr>
<tr>
<td>cosphiac,r</td>
<td>Power factor at 100% load</td>
<td>> 0.99</td>
</tr>
<tr>
<td></td>
<td>Controlled power factor range</td>
<td>0.8 over-excited</td>
</tr>
<tr>
<td></td>
<td>Standby consumption</td>
<td>2.7 W</td>
</tr>
<tr>
<td>ft</td>
<td>Nominal grid frequency (range)</td>
<td>50 (±5 Hz)</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>Nominal power DC</td>
</tr>
<tr>
<td></td>
<td>Voltage DC</td>
<td>715 V</td>
</tr>
<tr>
<td></td>
<td>MPP voltage - active tracking (I) / rated power (III)</td>
<td>220/430 - 800 V</td>
</tr>
<tr>
<td></td>
<td>MPP efficiency, static</td>
<td>99.9%</td>
</tr>
<tr>
<td></td>
<td>MPP efficiency, dynamic</td>
<td>99.7%</td>
</tr>
<tr>
<td></td>
<td>Max. DC voltage</td>
<td>1000 V</td>
</tr>
<tr>
<td></td>
<td>Turn on voltage DC</td>
<td>250 V</td>
</tr>
<tr>
<td></td>
<td>Turn off voltage DC</td>
<td>220 V</td>
</tr>
<tr>
<td>Iacmax</td>
<td>Max. MPP current</td>
<td>12 A per PV input</td>
</tr>
<tr>
<td></td>
<td>Max. short-circuit current DC (at STC)</td>
<td>13.5 A per PV input</td>
</tr>
<tr>
<td></td>
<td>Min. on grid power</td>
<td>20 W</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. efficiency</td>
<td>97.9%</td>
</tr>
<tr>
<td></td>
<td>Euro efficiency, V at dc,r</td>
<td>97.2%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions (H, W, D), inverter / incl. packaging</td>
<td>667 x 500 x 233 mm / 774 x 570 x 356 mm</td>
</tr>
<tr>
<td></td>
<td>Mounting recommendation</td>
<td>Mounting plate</td>
</tr>
<tr>
<td></td>
<td>Weight, inverter / incl. packaging</td>
<td>38 kg / 44 kg</td>
</tr>
<tr>
<td></td>
<td>Acoustic noise level*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MPP trackers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Operation temperature range</td>
<td>-25...60 °C</td>
</tr>
<tr>
<td></td>
<td>Nom. temperature range</td>
<td>-25...45 °C</td>
</tr>
</tbody>
</table>
Table 5.2 Specifications

1) At rated grid voltage (V_{ac,r}), \text{Cos}(\phi)=1.
2) To utilise the full range, asymmetrical layouts must be considered including start-up voltage for at least 1 string. Achieving nominal power will depend on configuration.
3) At symmetric input configuration.
4) SPL (Sound Pressure Level) at 1 m under normal operating conditions. Measured at 25 °C.

Table 5.3 Inverter Features and Functionalities

5) Remote control via external device.

Table 5.4 Safety Specifications
5.2 Derating Limits

To ensure that the inverters can produce the rated power, measurement inaccuracies are taken into account when enforcing the derating limits stated in Table 5.5.

\[(\text{Limit} = \text{rated value} + \text{tolerance})\]

<table>
<thead>
<tr>
<th>FLX series</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid current, per phase</td>
<td>7.5 A</td>
<td>9.0 A</td>
<td>10.6 A</td>
<td>12.1 A</td>
<td>13.6 A</td>
<td>15.1 A</td>
<td>18.8 A</td>
<td>22.6 A</td>
<td>25.6 A</td>
</tr>
<tr>
<td>Grid power, total</td>
<td>5150 W</td>
<td>6180 W</td>
<td>7210 W</td>
<td>8240 W</td>
<td>9270 W</td>
<td>10300 W</td>
<td>12875 W</td>
<td>15450 W</td>
<td>17510 W</td>
</tr>
</tbody>
</table>

Table 5.5 Derating Limits

5.3 Conformity

<table>
<thead>
<tr>
<th>International Standards</th>
<th>FLX series</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive LVD</td>
<td></td>
<td>2006/95/EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directive EMC</td>
<td></td>
<td>2004/108/EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>IEC 62109-1/IEC 62109-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated PV load switch</td>
<td>VDE 0100-712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Safety</td>
<td>IEC 62109-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC immunity</td>
<td>EN 61000-6-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 61000-6-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC emission</td>
<td>EN 61000-6-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 61000-6-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility interference</td>
<td>EN 61000-3-2/-3</td>
<td>EN 61000-3-11/-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility characteristics</td>
<td>IEC 61727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 50160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 Energy Meter (option)</td>
<td>EN62053-31 Annex D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.6 International Standards Compliance
5.4 Installation Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>−25 °C - +60 °C (for temperature derating see the FLX Series Design Guide.)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95 % (non-condensing)</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>PD2</td>
</tr>
<tr>
<td>Environmental class according to IEC</td>
<td>IEC60721-3-3</td>
</tr>
<tr>
<td></td>
<td>3K6/3B3/3S3/3M2</td>
</tr>
<tr>
<td>Air quality - general</td>
<td>ISA S71.04-1985</td>
</tr>
<tr>
<td></td>
<td>Level G2 (at 75% RH)</td>
</tr>
<tr>
<td>Air quality - coastal, heavy industrial and agricultural zones</td>
<td>Must be measured and classified acc. to ISA S71.04-1985</td>
</tr>
<tr>
<td>Vibration</td>
<td>1G</td>
</tr>
<tr>
<td>Observe product ingress protection class</td>
<td>IP65</td>
</tr>
<tr>
<td>Max. operating altitude</td>
<td>2000 m above sea level.</td>
</tr>
<tr>
<td></td>
<td>PELV protection is effective up to 2000 m above sea level only.</td>
</tr>
<tr>
<td>Installation</td>
<td>Avoid constant stream of water.</td>
</tr>
<tr>
<td></td>
<td>Avoid direct sunlight.</td>
</tr>
<tr>
<td></td>
<td>Ensure adequate air flow.</td>
</tr>
<tr>
<td></td>
<td>Mount on non-flammable surface.</td>
</tr>
<tr>
<td></td>
<td>Mount upright on vertical surface.</td>
</tr>
<tr>
<td></td>
<td>Prevent dust and ammonia gases.</td>
</tr>
<tr>
<td></td>
<td>The FLX inverter is an outdoor unit.</td>
</tr>
</tbody>
</table>

Table 5.7 Conditions for Installation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting plate</td>
<td>Hole</td>
<td>30 x 9 mm</td>
</tr>
<tr>
<td></td>
<td>Alignment</td>
<td>Perpendicular ±5° all angles</td>
</tr>
</tbody>
</table>

Table 5.8 Mounting Plate Specifications

5.4.1 France UTE Requirements

NOTICE

In France, observe the UTE C 15-712-1 and NF C 15–100 requirements.

For installation in France, apply warning label to front of inverter.
5.5 Cable Specifications

NOTICE

Avoid power loss in cables greater than 1% of the nominal inverter rating by following the values stated in the tables and illustrations.

<table>
<thead>
<tr>
<th>Specification</th>
<th>FLX series</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC cable maximum length [m]</td>
<td></td>
</tr>
<tr>
<td>AC cable size</td>
<td>5</td>
</tr>
<tr>
<td>2.5 mm²</td>
<td>43 m</td>
</tr>
<tr>
<td>4 mm²</td>
<td>69 m</td>
</tr>
<tr>
<td>6 mm²</td>
<td>86 m</td>
</tr>
<tr>
<td>10 mm²</td>
<td>95 m</td>
</tr>
<tr>
<td>16 mm²</td>
<td>92 m</td>
</tr>
</tbody>
</table>

AC cable type	5-wire copper cable
AC cable outer diameter	18-25 mm
AC cable insulation strip	Strip 16 mm length of insulation from all 5 wires
PE cable diameter	Equal to or greater than diameter of AC phase cables

Table 5.9 AC Cable Specifications

1) Using cable with a diameter less than 4 mm² is not recommended.
2) Using cable with a diameter less than 6 mm² is not recommended.

<table>
<thead>
<tr>
<th>Specification</th>
<th>FLX series</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC cable type</td>
<td>Min. 1000 V, 13.5 A</td>
</tr>
<tr>
<td>DC cable length</td>
<td></td>
</tr>
<tr>
<td>DC cable size 4 mm²</td>
<td></td>
</tr>
<tr>
<td>- 4.8 Ω/km</td>
<td>< 200 m*</td>
</tr>
<tr>
<td>DC cable size 6 mm²</td>
<td></td>
</tr>
<tr>
<td>- 3.4 Ω/km</td>
<td>200-300 m*</td>
</tr>
<tr>
<td>Mating connector</td>
<td>Sunclix PV-CM-S 2,5-6(+)/PV-CM-S 2,5-6(-)</td>
</tr>
</tbody>
</table>

Table 5.10 DC Cable Specifications

* The distance between inverter and PV array and back, plus the cumulative length of the cables used for PV array installation.

Consider also the following when choosing cable type and cross-sectional area:

- Ambient temperature
- Layout type (inside wall, under ground, free air etc.)
- UV resistance
5.6 Torque Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tool</th>
<th>Tightening Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M16 cable gland body</td>
<td>Wrench 19 mm</td>
<td>3.75 Nm</td>
</tr>
<tr>
<td>M16 cable gland, compression nut</td>
<td>Wrench 19 mm</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td>2 M25 cable gland body</td>
<td>Wrench 27 mm</td>
<td>7.5 Nm</td>
</tr>
<tr>
<td>M25 cable gland, compression nut</td>
<td>Wrench 27 mm</td>
<td>5.0 Nm</td>
</tr>
<tr>
<td>3 Front screw</td>
<td>Torx TX 20</td>
<td>1.5 Nm</td>
</tr>
</tbody>
</table>

Table 5.11 Nm Specifications 1
5.7 Mains Circuit Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLX series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Maximum inverter current, I_{acmax}</td>
<td>7.5 A</td>
</tr>
<tr>
<td>Recommended blow fuse type gL/gG *)</td>
<td>10 A</td>
</tr>
<tr>
<td>Recommended automatic fuse type B or C *)</td>
<td>16 A</td>
</tr>
</tbody>
</table>

Table 5.13 Mains Circuit Specifications

*) Always choose fuses according to national regulations.

5.8 Auxiliary Interface Specifications

<table>
<thead>
<tr>
<th>Interface Parameter</th>
<th>Parameter</th>
<th>Parameter Details</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 and Ethernet</td>
<td>Cable</td>
<td>Cable jacket diameter (⌀)</td>
<td>2x5-7 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable type</td>
<td>Shielded Twisted Pair (STP CAT 5e or SFTP CAT 5e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable characteristic impedance</td>
<td>100 Ω – 120 Ω</td>
</tr>
<tr>
<td></td>
<td>RJ-45 connectors:</td>
<td>Wire gauge</td>
<td>24-26 AWG (depending on mating metallic RJ-45 plug)</td>
</tr>
<tr>
<td></td>
<td>2pcs RJ-45 for RS-485</td>
<td>Cable shield termination</td>
<td>Via metallic RJ-45 plug</td>
</tr>
<tr>
<td></td>
<td>2pcs RJ-45 for Ethernet</td>
<td>Galvanic interface insulation</td>
<td>Yes, 500 Vrms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct contact protection</td>
<td>Double/Reinforced insulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short-circuit protection</td>
<td>Yes</td>
</tr>
<tr>
<td>RS-485 only</td>
<td>Cable</td>
<td>Max. cable length</td>
<td>1000 m</td>
</tr>
<tr>
<td></td>
<td>Max. number of inverter nodes</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Ethernet only</td>
<td>Communication</td>
<td>Network topology</td>
<td>Star and daisy chain</td>
</tr>
<tr>
<td></td>
<td>Cable</td>
<td>Max. cable length between inverters</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Max. number of inverters</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.14 Auxiliary Interface Specifications

*) Max. number of inverters are 100. If GSM modem is used for portal upload, the number of inverters in a network is limited to 50.

2) For outdoor use, we recommend outdoor burial type cable (if buried in the ground) for both Ethernet and RS-485.
5.9 RS-485 and Ethernet Connections

RS-485

Terminate the RS-485 communication bus at both ends.

- Termination is automatic when no RJ-45 plug is inserted into the socket. The absence of a mating connector enables both termination and bias.
- In rare cases, bias is unwanted, but termination is required. To terminate the RS-485 bus, mount a 100 Ω termination resistor into an RJ-45 field mountable connector. Then insert the connector (with resistor) into the unused RJ-45 connector.

The RS-485 address of the inverter is unique, and defined at the factory.

1.	GND
2.	GND
3.	RX/TX A (-)
4.	BIAS L
5.	BIAS H
6.	RX/TX B (+)
7.	Not connected
8.	Not connected

Bold = Compulsory. Cat5 cable contains all 8 wires.

For Ethernet: 10Base-TX and 100Base-TX auto cross-over.
5.9.1 Network Topology

The inverter has 2 Ethernet RJ-45 connectors enabling the connection of several inverters in a line topology as an alternative to the typical star topology. The 2 ports are similar and may be used interchangeably. For RS-485, only linear daisy chain connections can be used.

NOTICE

Ring topology is not permitted.

<table>
<thead>
<tr>
<th>Pinout Ethernet</th>
<th>Colour Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 5 T-568A</td>
<td>Cat 5 T-568B</td>
</tr>
<tr>
<td>1. RX+</td>
<td>Green/white</td>
</tr>
<tr>
<td>2. RX</td>
<td>Orange</td>
</tr>
<tr>
<td>3. TX+</td>
<td>Orange/white</td>
</tr>
<tr>
<td>4.</td>
<td>Blue</td>
</tr>
<tr>
<td>5.</td>
<td>Blue/white</td>
</tr>
<tr>
<td>6. TX-</td>
<td>Orange</td>
</tr>
<tr>
<td>7.</td>
<td>Brown/white</td>
</tr>
<tr>
<td>8.</td>
<td>Brown</td>
</tr>
</tbody>
</table>

Illustration 5.16 Network Topology

1. Linear Daisy Chain
2. Star Topology
3. Ring Topology (not permitted)
4. Ethernet Switch

NOTICE

The 2 network types cannot be mixed. The inverters can only be connected in networks which are either solely RS-485 or solely Ethernet.
Sicherheit und Konformität

Arten von Sicherheitsmeldungen

In diesem Dokument werden folgende Symbole verwendet:

⚠️ **GEFAHR**
Weist auf eine potenziell gefährliche Situation hin, die zum Tod führen kann.

⚠️ **WARNUNG**
Weist auf eine potenziell gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann.

⚠️ **VORSICHT**
Weist auf eine potenziell gefährliche Situation hin, die zu leichten bis mittelschweren Verletzungen führen kann. Kann auch verwendet werden, um vor unsicheren Arbeitsmethoden zu warnen.

⚠️ **HINWEIS**
Weist auf eine wichtige Information hin, einschließlich Situationen, die zur Beschädigung von Ausrüstung oder Eigentum führen können.

Allgemeine Sicherheit

Alle Personen, die mit der Installation und Wartung von Wechselrichtern betraut sind, müssen:

- in allgemeinen Sicherheitsrichtlinien für Arbeiten an elektrischen Betriebsmitteln geschult und erfahren sein.
- mit lokalen Anforderungen, Regeln und Vorschriften zur Installation vertraut sein.

⚠️ **HINWEIS**
Vor der Installation
Kontrollieren Sie, ob die Verpackung und der Wechselrichter unbeschädigt sind. Wenden Sie sich im Zweifelsfall vor Beginn der Installation an den Hersteller.

⚠️ **VORSICHT**
Installation
Zur Gewährleistung der optimalen Sicherheit sind die in diesem Dokument beschriebenen Schritte zu befolgen. Beachten Sie, dass der Wechselrichter über zwei spannungsführende Bereiche verfügt, den PV-Eingang und das AC-Netz.

⚠️ **WARNUNG**
Trennung des Wechselrichters

Schalten Sie zur Gewährleistung einer sicheren Trennung des Gleichstromkreises den PV-Trennschalter (1) ab.
VORSICHT
Wartung und Änderung
Reparaturen oder Umrüstungen am Wechselrichter dürfen nur von befugtem Fachpersonal durchgeführt werden. Es dürfen ausschließlich die über den Hersteller erhältlichen Originalersatzteile verwendet werden, um eine Gefährdung von Personen auszuschließen. Werden keine Originalersatzteile verwendet, ist die Einhaltung der CE-Richtlinien in Bezug auf elektrische Sicherheit, EMV und Maschinensicherheit nicht gewährleistet. Die Temperatur der Kühlelemente und Bauteile im Wechselrichter kann 70 °C überschreiten. Es besteht Gefahr, sich Brandwunden zuzuziehen.

Auch wenn der Wechselrichter vom AC-Netz getrennt ist, sind in einem PV-System DC-Spannungen bis zu 1000 V vorhanden. Fehler oder unsachgemäße Verwendung können einen Lichtbogenüberschlag verursachen.

WARNUNG
PV-Module erzeugen bei Lichteinfall Spannung.

WARNUNG
Führen Sie bei der Trennung der DC- und AC-Spannung keine Arbeiten am Wechselrichter durch.

Der Kurzschlussstrom der photovoltaischen Panele liegt nur geringfügig über dem maximalen Betriebsstrom und ist abhängig von der Stärke der Sonneneinstrahlung.

Konformität
Weitere Informationen sind im Download-Bereich unter www.SMA.de, Zulassungen und Zertifizierungen erhältlich.

Siehe auch 5 Technical Data.

CE-Kennzeichnung: Diese Kennzeichnung zeigt die Konformität der Geräte mit den Vorschriften der geltenden EG-Richtlinien an.
Inhaltsverzeichnis

1 Einführung 53
 1.1 Zweck des Handbuchs 53
 1.2 Softwareversion 53
 1.3 Ersatzteile 54
 1.4 Auspacken 54
 1.5 Identifizierung des Wechselrichters 54
 1.6 Installationsreihenfolge 54
 1.7 Rückgabe und Entsorgung 55
 1.7.1 Rückgabe 55
 1.7.2 Entsorgung 55
 1.8 Überblick über den Installationsbereich 56

2 Installation 57
 2.1 Umgebung und Abstände 57
 2.2 Montage der Wandhalterung 58
 2.3 Montage des Wechselrichters 59
 2.4 Abbau des Wechselrichters 60
 2.5 Zugang zum Installationsbereich 61
 2.6 AC-Netzanschluss 61
 2.7 RS-485- oder Ethernet-Anschlüsse 62
 2.8 Optionen 63
 2.9 Schließen 63
 2.10 PV-Anschluss 63
 2.10.1 Schutzklasse der PV-Module 65

3 Ersteinrichtung und Start 66
 3.1 Benutzerschnittstelle 66
 3.1.1 Betriebsarten 66
 3.1.2 Sicherheitsebene 66
 3.1.3 Vorbereitung für Master-Wechselrichter 67
 3.1.4 Manuelle PV-Konfiguration 67
 3.2 Display 68
 3.2.1 Ersteinrichtung über Display 69
 3.2.2 PV-Lastschalter einschalten 72
 3.2.3 Inbetriebnahme 72
 3.2.4 Autotest-Verfahren 72
 3.3 Web-Schnittstelle 72
 3.3.1 Vorbereiten des Setups 72
 3.3.3 Setup-Assistent 73
 3.3.4 Web-Schnittstelle 80
Inhaltsverzeichnis

3.3.5 Ansichten „Anlage“, „Gruppe“ und „Wechselrichter“ 81
3.3.6 Autotest-Verfahren ... 82

4 Service .. 83

4.1 Fehlersuche und -behebung ... 83
4.2 Wartung .. 86

5 Technische Daten .. 88

5.1 Spezifikationen .. 88
5.1.1 Spezifikationen zu den Wechselrichtern .. 88
5.2 Grenzwerte für die Reduzierung des Auslegungsverhältnisses 92
5.3 Konformität .. 92
5.4 Installationsbedingungen .. 93
5.5 Kabelspezifikationen ... 94
5.6 Drehmomentvorgaben .. 96
5.7 Spezifikation für die Netzsicherungen .. 97
5.8 Technische Daten der Hilfsschnittstelle .. 98
5.9 RS-485- und Ethernet-Anschlüsse .. 98
1 Einführung

1.1 Zweck des Handbuchs

Die Installationsanleitung enthält Informationen zur Installation und Inbetriebnahme des Wechselrichters der FLX-Serie.

Zusätzliche Ressourcen verfügbar:

- Das Benutzerhandbuch enthält Informationen zur Überwachung und zum Setup des Wechselrichters über das Display oder die Web-Schnittstelle.
- Das Projektierungshandbuch enthält Informationen zur Einsatzplanung des Wechselrichters in verschiedenen Solarenergieanwendungen.
- Die Installationsanleitung Sensor Interface für die Sensorschnittstellenoption enthält Informationen zur Installation und Inbetriebnahme der Sensorschnittstellenoption.
- Die Installationsanleitung für das GSM-Option Kit enthält Informationen zur Installation einer GSM-Option sowie zum Setup des Datenaufzeichnungs- oder Datentransfers vom Wechselrichter.
- Installationsanleitung für PLA-Option, enthält Informationen zur Installation und Einrichtung der PLA-Option für den Anschluss eines Funk-Rundsteuerungs-Empfängers an den Wechselrichter.
- In der Installationsanleitung für den Lüfter wird der Austausch eines defekten Lüfters beschrieben.

Abbildung 1.1 FLX Series-Wechselrichter

Die FLX Wechselrichter-Serie verfügt über:

- IP65-Gehäuse
- PV-Trennschalter
- Sunclix-Steckverbinder für die PV-Eingänge
- Manueller Zugriff über das lokale Display, zur Konfiguration und Überwachung des Wechselrichters.
- Funktionen zur Netzunterstützung. Weitere Informationen finden Sie im Projektierungs-handbuch der FLX-Serie.
- Zugriff über die Web-Schnittstelle zur Konfiguration und Überwachung des Wechselrichters.

1.2 Softwareversion

Dieses Referenzhandbuch gilt für die Wechselrichter-Softwareversion 2.05 und höher. Die Softwareversion finden Sie über das Display oder die Web-Schnittstelle (Wechselrichterebene) unter [Status → Wechselrichter → Seriennr. und SW-Ver. → Wechselrichter].
HINWEIS
Die Softwareversion bei Herausgabe des Handbuchs ist 2.05. Informationen zur aktuellen Softwareversion erhalten Sie unter www.SMA.de.

1.3 Ersatzteile
Für weitere Informationen zu Ersatzteilen, Ersatzteillnummern und Bestellung kontaktieren Sie bitte SMA Solar Technology AG.

1.4 Auspacken
Inhalt:
- Wechselrichter
- Wandhalterung
- Inhalt des Zubehörbeutels: 3 Befestigungsschrauben, 2 Kabelverschraubungen, 2 Gumminäpfe, 1 Masseschraube und 1 Sicherheitskennzeichnung für Frankreich.
- 4 bis 6 Sunclix Passteile, abhängig von der Anzahl der MPPT für FLX Pro 5-17.
- Installationsanleitung, Booklet-Format
- Kurzanleitung, Posterformat

Folgende Elemente sind nicht im Lieferumfang enthalten:
- Sicherheitsschrauben, M5 x 8-12, optional (nicht als Produkt bei SMA Solar Technology AG erhältlich)

1.5 Identifizierung des Wechselrichters
Auf dem Produktetikett an der Seite des Wechselrichters sind folgende Angaben zu finden:
- WR-Typ
- Wichtige technische Daten
- Seriennummer zur Identifizierung des Wechselrichters (unter dem Barcode).

1.6 Installationsreihenfolge
1. Bitte beachten Sie besonders den Abschnitt 1.1 Safety Message Types.
2. Den Wechselrichter gemäß Abschnitt 2.1 Environment and Clearances, 2.2 Mounting the Mounting Plate und 2.3 Mounting the Inverter installieren.
4. Die AC-Versorgung gemäß Abschnitt 2.6 AC Grid Connection installieren.
5. RS-485- oder Ethernet-Anschluss (sofern genutzt) gemäß Abschnitt 2.7 RS-485 or Ethernet Connections installieren.
6. Etwaige Optionen gemäß der im Lieferumfang der jeweiligen Option enthaltenen Installationsanleitung installieren.
7. Den Wechselrichter entsprechend den Anweisungen in Abschnitt 2.5 Access to the Installation Area schließen.
8. Das PV-System gemäß Abschnitt 2.10 PV Connection installieren.
10. Sprache, Master-Modus, Uhrzeit, Datum, installierte PV-Leistung, Land und Grid Code einstellen:
- In Abschnitt 3.3 Web Interface finden Sie Informationen zur Konfiguration über die Web-Schnittstelle.
- Zur Konfiguration über das Display, siehe 3.2 Display.
11. PV-System über den PV-Lastschalter einschalten. Siehe Abschnitt 2.10.1 Connection of PV.

Abbildung 1.2 Produktetikett
Installation und Setup mehrerer FLX Pro-Wechselrichter in Master-Follower-Konfiguration:

- Für jeden Wechselrichter die Schritte 2-9 und 11 ausführen.
- Für den als Master zu nutzenden Wechselrichter Schritt 10 ausführen.
- Schritt 12 ausführen.

1.7 Rückgabe und Entsorgung

Wird ein Wechselrichter ausgetauscht, können Sie diesen bei Ihrem Vertriebslieferanten oder direkt bei SMA Solar Technology AG abgeben oder gemäß den örtlichen und nationalen Vorschriften entsorgen. SMA Solar Technology AG ist sich seiner Verantwortung gegenüber der Umwelt bewusst und bittet daher seine Endkunden, bei der Entsorgung von Wechselrichtern die örtlichen Umweltbestimmungen einzuhalten und eine sichere und verantwortungsvolle Entsorgung sicherzustellen.

1.7.1 Rückgabe

Kontaktieren Sie für Rücksendung und Details die SMA Solar Technology AG-Hotline.

1.7.2 Entsorgung

1.8 Überblick über den Installationsbereich

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PELV (berührungssicher)</td>
</tr>
<tr>
<td>2</td>
<td>RS-485-Schnittstelle</td>
</tr>
<tr>
<td>3</td>
<td>Options-Steckplatz A (kann für GSM-Option, Sensorschnittstellen-Option oder PLA-Option verwendet werden)</td>
</tr>
<tr>
<td>4</td>
<td>Ethernet-Schnittstelle</td>
</tr>
<tr>
<td>5</td>
<td>Options-Steckplatz A (kann für GSM-Option, Sensorschnittstellen-Option oder PLA-Option verwendet werden)</td>
</tr>
</tbody>
</table>

Spannungsführende Bereiche

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PV-Anschlussbereich</td>
</tr>
<tr>
<td>6</td>
<td>Kommunikationskarte</td>
</tr>
<tr>
<td>7</td>
<td>AC-Klemmenleiste</td>
</tr>
</tbody>
</table>

Sonstiges

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Position für Sicherheitsschrauben</td>
</tr>
<tr>
<td>9</td>
<td>PV-Trennschalter</td>
</tr>
<tr>
<td>10</td>
<td>Position für Sicherheitsschrauben</td>
</tr>
</tbody>
</table>

Abbildung 1.3 Überblick über den Installationsbereich
2 Installation

2.1 Umgebung und Abstände

Abbildung 2.1 Ständigen Kontakt mit Wasser vermeiden

Abbildung 2.2 Direkte Sonneneinstrahlung vermeiden

Abbildung 2.3 Ausreichende Luftströmung sicherstellen

Abbildung 2.4 Ausreichende Luftströmung sicherstellen

Abbildung 2.5 Auf nicht entflammbarer Oberfläche montieren

Abbildung 2.7 Staub und Ammoniakgase vermeiden

HINWEIS

Bei der Auswahl des Installationsorts sicherstellen, dass die Produkt- und Warnhinweise auf dem Wechselrichter jederzeit sichtbar sind. Ausführliche Informationen finden Sie in Abschnitt 5 Technical Data.
2.2 Montage der Wandhalterung

Abbildung 2.8 Sicherheitsabstände

Für eine ausreichende Luftströmung einen Mindestabstand von 620 mm einhalten.
Abbildung 2.9 Wandhalterung

HINWEIS

Die mitgelieferte Wandhalterung muss zwingend verwendet werden.

Montage der Wandhalterung:
- Wandhalterung in der vorgesehenen Umgebung montieren.
- Schrauben und Dübel verwenden, die das Wechselrichtergewicht tragen können.
- Sicherstellen, dass die Wandhalterung korrekt ausgerichtet ist.
- Bei der Installation eines oder mehrerer Wechselrichter die Sicherheitsabstände einhalten, um eine ausreichende Luftströmung sicherzustellen. Die Abstände sind in Abbildung 2.8 und auf dem Schild an der Wandhalterung angegeben.
- Es wird die Montage der Wechselrichter in einer Reihe empfohlen. Wenden Sie sich für Richtlinien zur Montage von Wechselrichtern in mehreren Reihen an den Hersteller.
- An der Frontseite des Wechselrichters zwecks Servicezugang einen ausreichenden Abstand einhalten.

2.3 Montage des Wechselrichters

VORSICHT

Das Gerät muss aus Sicherheitsgründen von zwei Personen getragen oder mithilfe eines geeigneten Transportwagens bewegt werden. In jedem Fall Sicherheitsschuhe tragen.

Vorgehensweise:

2. Am Wechselrichter die seitlichen Schrauben in die Schlitze der Wandhalterung einsetzen.

4. Darauf achten, dass die vier seitlichen Schrauben sicher in den Schlitzen der Wandhalterung sitzen.

5. Den Wechselrichter loslassen.

Diebstahlsicherung (optional)
Um den Wechselrichter vor Diebstahl zu schützen, ist dieser wie folgt zu befestigen:

1. 2 Sicherheitsschrauben des Typs M5 x 8-12 verwenden (nicht im Lieferumfang enthalten).

2. Die Schrauben durch die vorgebohrten Diebstahlsicherungsoffnungen (siehe Abbildung 1.3) und durch die Wandhalterung in die Wand schrauben.

3. Die Schrauben festziehen.

2.4 Abbau des Wechselrichters

Vorgehensweise:

1. Der Abbau des Wechselrichters erfolgt in umgekehrter Reihenfolge des Einbaus.

3. Den Wechselrichter an der Unterseite festhalten, anheben und die seitlichen Schrauben aus den Schlitzen der Wandhalterung führen.

2.5 Zugang zum Installationsbereich

VORSICHT

Vorgehensweise:

3. Zum Schließen der Abdeckung diese wieder nach unten ziehen und die beiden vorderen Schrauben festziehen.

Abbildung 2.14 Vordere Schrauben lösen und Abdeckung anheben

2.6 AC-Netzanschluss

Abbildung 2.15 Installationsbereich

Abbildung 2.16 Abisolierung der AC-Kabel

Am AC-Kabel alle fünf Drähte abisolieren. Der Schutzleiter (PE) muss länger als die Netz- und Neutraleiter sein. Siehe Abbildung 2.16.
1. Prüfen, ob die Nennspannung des Wechselrichters der Netzspannung entspricht.
2. Sicherstellen, dass der Haupttrennschalter geöffnet ist und durch angemessene Schutzmaßnahmen sicherstellen, dass ein Wiedereinschalten nicht möglich ist.
3. Die Frontabdeckung öffnen.
4. Das Kabel durch die AC-Kabelverschraubung zu den Klemmenleisten schieben.
5. Die drei Netzleiter (L1, L2, L3), den Neutralleiter (N) und den Schutzleiter (PE) entsprechend den Kennzeichnungen an die Klemmenleiste anschließen.

VORSICHT
Prüfen, ob die Verdrahtung korrekt vorgenommen wurde. Durch das Anschließen eines Phasenleiters an die Klemme für den Neutralleiter kann der Wechselrichter dauerhaft beschädigt werden.

HINWEIS
Alle Schrauben und Kabelverschraubungen gründlich festziehen.

HINWEIS

HINWEIS
Informationen zu Sicherungen und Fehlerstromschutzeinrichtung (RCD) finden Sie in Abschnitt 5 Technical Data.

2.7 RS-485- oder Ethernet-Anschlüsse

Von dem Anschluss de RS-485- oder Ethernet-Kabel die Anforderungen in Abschnitt 5.9 RS-485 and Ethernet Connections beachten.

Vorgehensweise:
1. Den RJ-45-Steckverbinder nicht entfernen.
2. Die Kabel durch Kabelverschraubungen durch die Unterseite des Wechselrichters führen. Siehe Abbildung 2.18.

![Abbildung 2.17 AC-Anschlussbereich](image)
HINWEIS
Alle Schrauben und Kabelverschraubungen gründlich festziehen.

2.8 Optionen
Für Informationen zur Installation von Optionen siehe die entsprechende Installationsanleitung.

2.9 Schließen
2. AC-Leistung einschalten.

2.10 PV-Anschluss

WARNUNG
PV-Module erzeugen bei Lichteinfall Spannung. PV darf NICHT mit an den Masseanschluss angeschlossen werden!

Ein geeignetes Voltmeter verwenden, das bis zu 1000 V DC messen kann.
1. Sunclix-Steckverbinder (nicht im Lieferumfang enthalten) an die PV-Kabel montieren, siehe Abschnitt Abbildung 2.21.

Abbildung 2.21 Richtige Polarität: Sunclix-Steckverbinder an Kabel montieren

1. Die DC-Spannung zwischen der Plusklemme des PV-Arrays und der Masse (oder dem grün-gelben PE-Kabel) messen.
 - Die gemessene Spannung muss gegen null gehen. Wenn die Spannung konstant ist und nicht null beträgt, liegt ein Isolierungsfehler irgendwo im PV-Array vor.
2. Vor dem weiteren Vorgehen die Störung ausfindig machen und beheben.
3. Diese Vorgehensweise für alle Arrays wiederholen. Eine ungleichmäßige Verteilung der Eingangsleistung an den PV-Eingängen ist in folgenden Fällen zulässig:
 - Die einzelnen Eingänge sind nicht überlastet. Die maximal zulässige Last pro Eingang beträgt 8000 W.
 - Der maximale Kurzschlussstrom der PV-Module bei Standardtestbedingungen (Standard Test Conditions, STC) überschreitet nicht 13,5 A pro Eingang.

PV-Installation
Ungenutzte PV-Eingänge dürfen nicht kurzgeschlossen werden.

Abbildung 2.22 DC-Anschlussbereich

1. Den PV-Lastschalter am Wechselrichter ausschalten.
 - Gegenstück des Sunclix-Steckverbinders an PV-Kabel anschließen.
 - An die einzelnen PV-Eingänge im PV-Anschlussbereich anschließen (muss einrasten).
2.10.1 Schutzklasse der PV-Module

3 Ersteinrichtung und Start

3.1 Benutzerschnittstelle

Die Benutzerschnittstelle besteht aus folgenden Elementen:

- Web-Schnittstelle. Ermöglicht Zugang zu mehreren Wechselrichtern per Ethernet.

Schnittstelle für Setup auswählen und den Wechselrichter starten, entweder über das

- Display

oder

- Web-Schnittstelle

Die andere Schnittstelle während des Setups und der Inbetriebnahme nicht berühren.

Zugriffs- und Menüinformationen finden Sie im FLX Benutzerhandbuch.

3.1.1 Betriebsarten

Der Wechselrichter hat vier Betriebsarten, die durch LEDs angezeigt werden. Weitere Informationen zu den LEDs finden Sie im FLX Benutzerhandbuch.

Vom Netz (LEDs aus)
Wenn das AC-Netz länger als 10 Minuten nicht mit Energie versorgt wurde, trennt sich der Wechselrichter selbstständig vom Netz und schaltet sich ab. „Vom Netz getrennt – Bereitschaftsmodus“ ist standardmäßig als Nachtbetrieb eingestellt. „Vom Netz getrennt – Energiesparmodus“ ist der Nachtbetrieb mit dem geringsten Energieverbrauch.

- Vom Netz getrennt – Standby-Modus (LEDs aus)
 Der Wechselrichter ist vom Netz getrennt. Die Benutzer- und Kommunikationsschnittstellen werden zu Kommunikationszwecken weiter mit Strom versorgt.
- Vom Netz getrennt – Energiesparmodus (LEDs aus)

Der Wechselrichter ist vom Netz getrennt. Die Benutzers-, Kommunikations- und Optionsschnittstellen werden nicht mit Leistung versorgt.

Anschlussmodus (Grüne LED blinkt)

Am Netz (Grüne LED leuchtet)
Der Wechselrichter ist an das Netz angeschlossen und versorgt es mit Strom. Der Wechselrichter trennt sich in folgenden Fällen vom Netz:

- Der Wechselrichter erkennt abnormale Netzbedingungen (abhängig vom Grid Code) oder
- ein internes Ereignis tritt auf.
- Es steht nicht genug PV-Leistung zur Verfügung (keine Leistungseinspeisung in das Netz für zehn Minuten).

In diesem Fall wechselt der Wechselrichter in den Anschlussmodus oder in die Betriebsart „Vom Netz getrennt“.

Ausfallsicher (Rote LED blinkt)
WENN der Wechselrichter beim Selbsttest (in der Betriebsart Anschlussmodus) oder während des Betriebs einen Schaltkreisfehler feststellt, schaltet er in die Betriebsart „Ausfallsicher“ und wird vom Netz getrennt. Der Wechselrichter verbleibt in der Betriebsart „Ausfallsicher“, bis die PV-Leistung zehn Minuten lang ausbleibt oder der Wechselrichter vollständig abgeschaltet wird (AC+PV).

3.1.2 Sicherheitsebene

Drei vordefinierte Sicherheitsebenen begrenzen den Benutzerzugriff auf Menüs und Optionen.
Sicherheitsebenen:

- Ebene [0]: Allgemeiner Zugriff. Kein Passwort erforderlich.
- Ebene [1]: Installateur oder Servicetechniker. Passwort für Zugriff erforderlich.

Im Handbuch wird durch eine [0], [1] oder [2] hinter dem Menüelement auf die Sicherheitsebene hingewiesen, die für den Zugriff mindestens erforderlich ist.

Wenn Sie sich über die Web-Schnittstelle als „Admin“ anmelden, erfolgt der Zugriff über Sicherheitsebene [0].

- Die Service-Anmeldung bietet direkten Zugriff auf eine bestimmte Sicherheitsebene für die Dauer von einem Tag.
- Rufen Sie die Service-Anmeldung ab unter SMA Solar Technology AG.
- Über das Display oder die Web-Schnittstelle die Anmeldedaten in das Anmeldedialogfeld eingeben.
- Wenn der Service-Vorgang abgeschlossen ist, melden Sie sich ab unter [Setup → Sicherheit].
- Der Wechselrichter meldet den Benutzer automatisch ab, wenn zehn Minuten lang keine Aktivität erfolgt.

Die Sicherheitsebenen auf dem Display und der Web-Schnittstelle sind ähnlich. In einer Sicherheitsebene wird Zugriff auf sämtliche Menüelemente dieser Ebene sowie untergeordneter Sicherheitsebenen gewährt.

3.1.3 Vorbereitung für Master-Wechselrichter

Über die Funktion Master-Modus kann ein Wechselrichter als Master-Wechselrichter für das gesamte Wechselrichternetzwerk festgelegt werden.

Der Master-Wechselrichter greift auf die anderen Wechselrichter im Netzwerk zu und bietet so folgende Optionen:

- Nachbildung von Einstellungen und Daten auf den restlichen Wechselrichtern im Netzwerk.
 Inbetriebnahme und Datenverwaltung werden dadurch vereinfacht.
- Regelung der Leistung auf Anlagenebene (Regelung der Nebenleistungen).
- Abruf von Daten aus dem Netzwerk für grafische Darstellung auf der Web-Schnittstelle, Upload zu einem Data Warehouse oder Export auf einen PC.

Vor der Aktivierung des Master-Modus müssen folgende Anforderungen erfüllt sein:

- Im Netzwerk sind keine anderen Master-Wechselrichter vorhanden.
- Es muss per Patchkabel (Netzwerkkabel Cat-5e, gekreuzt oder ungekreuzt) ein Ethernet-Anschluss vom PC an die RJ-45-Schnittstelle des Wechselrichter bestehen. Siehe 2.7 RS-485 or Ethernet Connections.
- Wenn Sensordaten erforderlich sind, muss die Sensorschnittstellenoption mit Sensoren installiert sein.
- Der Wechselrichter muss in einer „Daisy-Chain“-Netzwerktopologie im kürzesten Abstand zum Router angeordnet sein.

3.1.4 Manuelle PV-Konfiguration

Den Wechselrichter auf manuelle PV-Konfiguration einstellen:

- Über das Display, Sicherheitsebene 1, unter [Setup → Setup-Details → PV-Konfiguration].
- Über die Web-Schnittstelle, Sicherheitsebene 0, unter [Wechselrichterniveau: Setup → Setup-Details → PV-Konfiguration].

Wenn der Wechselrichter auf manuelle PV-Konfiguration eingestellt ist, wird die automatische Erkennung anschließend außer Kraft gesetzt.
Zur manuellen Einstellung der Konfiguration über das Display:

1. AC einschalten, um den Wechselrichter zu starten.
4. Manuelle PV-Konfiguration auswählen, unter: [Setup → Setup-Details → PV-Konfiguration → Modus: Manuell].
5. Die PV-Eingangskonfiguration an die Verdrahtung anpassen, unter: [Setup → Setup-Details → PV-Konfiguration].
 - PV-Eingang 1: Einzeln, Parallel oder Aus
 - PV-Eingang 2: Einzeln, Parallel oder Aus
 - PV-Eingang 3: Einzeln, Parallel oder Aus

3.2 Display

HINWEIS

Das Display wird spätestens 10 Sekunden nach dem Einschalten aktiviert.

Der Benutzer hat über das integrierte Display auf der Vorderseite des Wechselrichters Zugang zu allen Informationen über das PV-System und den Wechselrichter.

Das Display hat zwei Betriebsarten:

1. **Normal**: Das Display ist in Gebrauch.
Ersteinrichtung und Start

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bei dem Wechselrichter handelt es sich um einen Follower, der an einen Master angeschlossen ist. Dieses Symbol wird oben rechts angezeigt.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.1 Übersicht der Displaytasten und -funktionen

HINWEIS

Die Menüstruktur ist in vier Hauptbereiche unterteilt:

1. **Ansicht**: Anzeige von kurzem Status, Ertrag und Performance (ausschließlich Lesezugriff).
2. **Status**: Zeigt Werte der Wechselrichterparameter an (ausschließlich Lesezugriff).
3. **Log**: Zeigt protokollierte Daten an (ausschließlich Lesezugriff).
4. **Setup**: Zeigt konfigurierbare Parameter an (Lese- und Schreibzugriff).

Die folgenden Abschnitte enthalten ausführlichere Informationen.

3.2.1 Ersteinrichtung über Display

Abbildung 3.2 Sprache auswählen

HINWEIS

Zur Auswahl und Bestätigung der Standardsprache (Englisch) zweimal auf die Taste [OK] drücken.

Abbildung 3.3 Master-Modus

Abbildung 3.4 Uhrzeit einstellen

HINWEIS
Datum und Uhrzeit müssen korrekt eingestellt werden. Der Wechselrichter verwendet diese Informationen zur Protokollierung. Wenn versehentlich eine falsche Uhrzeit oder ein falsches Datum eingestellt wurde, korrigieren Sie diese Einstellung unverzüglich im Menü „Datum u. Uhrzeit einst.“ [Setup → Wechselrichterdetails → Datum u. Uhrzeit einst.].

Abbildung 3.5 Datum einstellen

Abbildung 3.6 Installierte PV-Leistung

Die installierte PV-Leistung für alle PV-Eingänge eingeben. Wenn eine Gruppe von PV-Eingängen parallel geschaltet ist, geben Sie die durchschnittliche installierte PV-Leistung für jeden PV-Eingang ein (siehe Beispiele).
Tabelle 3.2 Beispiele installierter PV-Leistung

<table>
<thead>
<tr>
<th>PV-Stringkonfiguration</th>
<th>Diesen Wert für „Installierte PV-Leistung“ eingeben.</th>
</tr>
</thead>
</table>
| Beispiel 1: PV1, PV2 und PV3 befinden sich alle im Einzelmodus. Installierte PV-Nennleistung: | PV 1: 6000 W
PV 2: 6000 W
PV 3: 3000 W |
| Beispiel 2: PV1 und PV2 sind parallel geschaltet und haben eine installierte PV-Leistung von 10 kW. PV3 ist im Einzelmodus und hat eine PV-Nennleistung von 4 kW. | PV 1: 5000 W
PV 2: 5000 W
PV 3: 4000 W |
PV 2: 5500 W
PV 3: 0 W |

WARNUNG
Die korrekte Auswahl des Grid Codes ist wichtig, um die lokalen und nationalen Standards einzuhalten.

HINWEIS

HINWEIS

3.2.2 PV-Lastschalter einschalten

Abbildung 3.10 PV-Lastschalter einschalten

3.2.3 Inbetriebnahme
Der Wechselrichter startet automatisch, wenn ausreichende Sonneneinstrahlung zur Verfügung steht. Die Inbetriebnahme dauert einige Minuten. Während dieser Zeit führt der Wechselrichter einen Selbsttest durch.

HINWEIS
Der Wechselrichter verfügt über Verpolungsschutz. Der Wechselrichter erzeugt erst dann Leistung, wenn keine Verpolung mehr vorliegt.

3.2.4 Autotest-Verfahren
Für bestimmte Grid Codes ist eine automatische Prüfung des Wechselrichters mit dem Autotest-Verfahren möglich:

3.3 Web-Schnittstelle
In diesen Anweisungen wird die Web-Schnittstelle erläutert, die den Fernzugriff auf den Wechselrichter erleichtert.

Navigieren Sie zum Downloadbereich auf www.SMA.de, um die neuesten Anweisungen herunterzuladen.

Die Software unterstützt für alle Texteingaben mit Unicode kompatible Zeichen.

Der Wechselrichtername darf keine Leerzeichen enthalten.

Bei Anlagen-, Gruppen- und Wechselrichternamen sind nur folgende Zeichen erlaubt:

<table>
<thead>
<tr>
<th>Buchstaben</th>
<th>abcdedfghijklmnopqrstuvwxyz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Großbuchstaben</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
</tr>
<tr>
<td>Zahlen</td>
<td>0123456789</td>
</tr>
<tr>
<td>Sonderzeichen</td>
<td>_-</td>
</tr>
</tbody>
</table>

3.3.1 Vorbereiten des Setups
Vor dem Beginn der Inbetriebnahme ist Folgendes sicherzustellen:
- Der Master-Wechselrichter ist ordnungsgemäß gekennzeichnet und vorbereitet, siehe 3.1.3 Preparation for Master Inverter.
- Es besteht eine Ethernet-Verbindung zwischen PC und Wechselrichter, siehe auch 2.7 RS-485 or Ethernet Connections.
3.3.2 Ersteinrichtung über die Web-Schnittstelle

VORSICHT

Setup-Sequenz
1. Sicherstellen, dass der Master-Wechselrichter ordnungsgemäß gekennzeichnet und vorbereitet ist, siehe 3.1.3 Preparation for Master Inverter.
3. Typ 1 der folgenden Optionen in der Adresszeile:
Unter Windows 7 und 8 kann der Installationsassistent nicht verwendet werden.
Die Seriennummer auf dem Produktschild seitlich am Wechselrichtergehäuse suchen. Siehe Abbildung 1.2.

1. Das Anmeldefenster für die Web-Schnittstelle wird geöffnet.
2. In die Felder für Benutzer und Passwort „admin“ eingeben und auf „Anmelden“ klicken.

3.3.3 Setup-Assistent

Schritt 1 von 8: Display-Sprache
Display-Sprache auswählen.
- Die Standardsprache ist Englisch.

HINWEIS
Diese Auswahl definiert die Display-Sprache, nicht den Grid Code.

Wählen Sie die Spracheinstellung des Wechselrichters

Display-Sprache: Deutsch

Abbildung 3.11 Schritt 1 von 8: Display-Sprache

Wählen Sie [Setup → Setup Details], um die Änderung der Spracheinstellungen später vorzunehmen.

Schritt 2 von 8: Master-Einstellung
Um einen Master-Wechselrichter einzurichten, auf „Diesen Wechselrichter als Master einstellen“ klicken.
Ein Scanvorgang wird durchgeführt, um die Wechselrichter im Netzwerk zu identifizieren.
Ein Popup-Fenster zeigt die Wechselrichter, die erfolgreich identifiziert wurden.
Auf [OK] klicken, um zu bestätigen, dass die korrekte Anzahl an Wechselrichtern gefunden wurde.

Abbildung 3.12 Schritt 2 von 8: Master-Einstellung

Um diese Einstellung später zu ändern, [Wechselrichterniveau: Setup → Wechselrichterdetails] aufrufen.

Schritt 3 von 8: Uhrzeit und Datum
Eingabe:
- Uhrzeit im 24-Stunden-Format
- Datum
- Zeitzone

Eine genaue Eingabe ist wichtig, da Datum und Uhrzeit für Protokollierungszwecke verwendet werden. Die Anpassung an die Sommerzeit erfolgt automatisch.

Abbildung 3.13 Schritt 3 von 8: Uhrzeit und Datum

Um diese Einstellungen später zu ändern, [Wechselrichterniveau: Setup → Datum u. Uhrzeit einst.] aufrufen.
Ersteinrichtung und Start

Schritt 4 von 8: Anschlussleistung

Für jeden PV-Eingang die installierte PV-Leistung eingeben.

Anhand dieser Werte wird der Nutzungsgrad berechnet. Weitere Informationen finden Sie im *Projektierungshandbuch der FLX-Serie*.

VORSICHT

Falsche Einstellungen können schwerwiegende Folgen für die Produktionseffizienz haben.

Abbildung 3.14 Schritt 4 von 8: Anschlussleistung

Legen Sie die installierte PV-Leistung angeschlossen an jeden DC-Eingang des Wechselrichters fest.

```
PV1 Leistung 6000 W
PV2 Leistung 6000 W
PV3 Leistung 6000 W
```

Um die installierte Leistung zu ändern, [Wechselrichterniveau: Setup → Kalibrierung, PV-Array] aufrufen.

Schritt 5 von 8: Installationsland

Einstellung gemäß Installationsstandort auswählen.
VORSICHT

Die korrekte Auswahl ist wichtig, um die lokalen und nationalen Standards einzuhalten.

Setup-Assistent: Schritt 5 von 8 (Ländereinstellung eingeben)

Wählen Sie die Ländereinstellung des Wechselrichters

Land: Deutschland

Vorheriger Weiter

Abbildung 3.15 Schritt 5 von 8: Installationsland
Schritt 6 von 8: Grid Code

Grid Code gemäß Installationsort auswählen.
- Die Standardeinstellung ist [nicht definiert].

Die Grid Code-Einstellungen zur Bestätigung erneut auswählen.
- Die Einstellung wird sofort aktiviert.

VORSICHT

Die korrekte Auswahl ist wichtig, um die lokalen und nationalen Standards einzuhalten.

Ersteinrichtung und Start

Setup-Assistent: Schritt 6 von 8

Wählen Sie das vom Wechselrichter verwendete konkrete Netz

- **Land:** Deutschland
- **Netz:** Mittelspannung

(Wählen Sie die Netzeinstellungen erneut aus)

HINWEIS

Es ist wichtig, die richtige Auswahl für Netzeinstellungen einzugeben.

Detaillierte Beschreibung der wählbaren Netzeinstellungen: Netzliste anzeigen

Abbildung 3.16 Schritt 6 von 8: Grid Code

HINWEIS

Wenn die ersten Einstellungen nicht mit den bestätigten Einstellungen übereinstimmen,
- wird die Grid-Code-Auswahl abgebrochen, und
- der Assistent kehrt zu Schritt 5 zurück.

Wenn die ersten Einstellungen und die bestätigten Einstellungen übereinstimmen, aber inkorrekt sind, wenden Sie sich an den Service.

Schritt 7 von 8: Nachbildung

Dieser Schritt ist für einen Master-Wechselrichter verfügbar, an den Follower angeschlossen sind. Nachbildung der Einstellungen von Schritt 1-6 auf anderen Wechselrichtern im gleichen Netzwerk:
- Die Wechselrichter auswählen.
- Auf [Replizieren] klicken.
HINWEIS
Wenn die PV-Konfiguration, die installierte PV-Leistung
und der PV-Array-Bereich der Follower-Wechselrichter
im Netzwerk vom Master-Wechselrichter abweichen,
keine Nachbildung durchführen. Die Einstellungen für
die untergeordneten Wechselrichter einzeln vornehmen.

Setup-Assistent: Schritt 7 von 8
Bilden Sie die Einstellungen vom Master-Wechselrichter für die ausgewählten Slave-Wechselrichter nach

☑ Alle Name
☑ Slave Konfiguriert
☑ abc123456 (Master) Konfiguriert

Weiter

Abbildung 3.17 Schritt 7 von 8: Nachbildung

Schritt 8 von 8: Inbetriebnahme des Wechselrichters
Der Assistent zeigt die Setup-Konfiguration im Überblick an.
Drücken Sie [Beenden], um den Wechselrichter zu starten. Die Inbetriebnahme erfolgt, wenn ausreichend Sonnenein-
strahlung vorhanden ist.
Der Inbetriebnahmevergang einschließlich Selbsttest dauert einige Minuten.
Abbildung 3.18 Schritt 8 von 8: Inbetriebnahme des Wechselrichters

Um das Setup später zu ändern, über die integrierte Web-Schnittstelle oder das Display auf den Wechselrichter auf Wechselrichterniveau zugreifen.

3.3.4 Web-Schnittstelle

Die Web-Schnittstelle ist folgendermaßen strukturiert.

1. **Anlagenname**: Zeigt den aktuellen Namen der Anlage an:
 - Auf den Anlagennamen klicken, um die Anlagenansicht anzuzeigen.
 - Den Anlagennamen unter [Setup → Anlagendetails] ändern.

2. **Gruppenmenü**: Zeigt die Gruppen der Wechselrichter an:
 - Standardmäßig werden die Wechselrichter der Gruppe 1 zugeordnet.
 - Auf einen Gruppennamen klicken, um die Gruppenanzeige und eine Liste der Wechselrichter in der Gruppe anzuzeigen.

 - Auf den Namen eines Wechselrichters klicken, um die Wechselrichteransicht anzuzeigen.

4. **Hauptmenü**: Dieses Menü ist das Hauptanzeigemenü für den Wechselrichter.

5. **Untermenü**: Das Untermenü ist dem aktuell ausgewählten Hauptmenüelement zugeordnet. Alle Untermenüs eines bestimmten Hauptmenüelements werden hier angezeigt.

7. **Fußzeile**: Optionen in der Fußzeile:

Abbildung 3.19 Übersicht
3.3.5 Ansichten „Anlage“, „Gruppe“ und „Wechselrichter“

Sprache: Öffnet ein Popup-Fenster. Auf eine Landesflagge klicken, um die Sprache der Web-Schnittstelle auf die gewünschte Sprache für die aktuelle Sitzung einzustellen.

Kontakt: Öffnet ein Einblendfenster mit den Kontaktdaten von SMA Solar Technology AG.

Abmeldung: Öffnet das Dialogfeld für die Anmeldung bzw. Abmeldung.

Sicherheitsebene: Zeigt die aktuelle Sicherheitsebene (siehe Abschnitt Sicherheitsebenen).

HINWEIS

Der Inhalt des Hauptmenüs ändert sich abhängig davon, welches Menü derzeit ausgewählt ist: die Anlage, eine Gruppe von Wechselrichtern oder ein individueller Wechselrichter.
Tabelle 3.3 In der Anlagenansicht angezeigte Informationen, Übersichtsbildschirm

HINWEIS

Zur Berechnung des Nutzungsgrads ist ein Einstrahlungssensor erforderlich, siehe [Setup → Kalibrierung].

3.3.6 Autotest-Verfahren

Für bestimmte Grid Codes ist eine automatische Prüfung des Wechselrichters mit dem Autotest-Verfahren möglich:

4 Service

4.1 Fehlersuche und -behebung

Diese Anleitung enthält Tabellen mit Meldungen (Ereignisse), die auf dem Wechselrichterdisplay angezeigt werden. Die Tabellen enthalten Beschreibungen und Maßnahmen, die im Falle eines Wechselrichtereignisses zu ergreifen sind. Die vollständige Ereignisliste finden Sie im \textit{FLX Benutzerhandbuch der Serie}.

Der Ereigniscode setzt sich aus zwei Elementen zusammen: Gruppenklassifikator und Ereignis-ID. Der Gruppenklassifikator beschreibt den allgemeinen Ereignistyp, anhand der Ereignis-ID kann das spezifische Ereignis identifiziert werden.

\textit{Tabelle 4.1} enthält eine Erläuterung des Aufbaus der Tabellen mit Wechselrichtereignissen sowie der Verwendung dieser Tabellen.

Tabelle 4.1 Lesen von Ereignistabellen

<table>
<thead>
<tr>
<th>Ereignistyp</th>
<th>ID</th>
<th>Statusmeldung</th>
<th>Beschreibung</th>
<th>Maßnahme</th>
<th>VNB</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzbezogene Ereignisse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Statusmeldung</td>
<td>Beschreibung</td>
<td>Maßnahme</td>
<td>VNB</td>
<td>Hotline</td>
<td>PV</td>
<td></td>
</tr>
<tr>
<td>1–6</td>
<td>Netzspannung zu niedrig.</td>
<td>Dem Installateur die Netzphasenspannung mitteilen.</td>
<td></td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7–9</td>
<td>Durchschnittliche Netzspannung 10 Minuten lang zu hoch.</td>
<td>Dem Installateur die Netzphasenspannung mitteilen.</td>
<td></td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10–15</td>
<td>Netzspannung zu hoch.</td>
<td>Dem Installateur die Netzphasenspannung mitteilen.</td>
<td></td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16–18</td>
<td>Der Wechselrichter hat eine Spannungsspitze im Netz ermittelt.</td>
<td>Spannung und AC-Installation überprüfen.</td>
<td></td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19–24</td>
<td>Netzfrequence zu niedrig oder zu hoch.</td>
<td>Installateur über die Netzfrequence informieren.</td>
<td></td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 4.2 Netzbezogene Ereignisse

<table>
<thead>
<tr>
<th>ID</th>
<th>Statusmeldung</th>
<th>Beschreibung</th>
<th>Maßnahme</th>
<th>VNB</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-27</td>
<td>Netzausfall, Außenleiterspannungen zu niedrig.</td>
<td>Den Installateur über die Spannung an allen drei Phasen informieren. Außenleiterspannung und AC-Installation überprüfen.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28-30</td>
<td>Netzausfall, ROCOF außerhalb des zulässigen Bereichs.</td>
<td>Den VNB kontaktieren, wenn das Ereignis mehrmals innerhalb eines Tages auftritt.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31-33</td>
<td>DC-Netzstrom zu hoch.</td>
<td>Den Installateur kontaktieren, wenn dieses Ereignis mehrmals am Tag eintritt. Installateur: Netzanalyse vor Ort durchführen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34-37</td>
<td>Fi-Überwachungsgerät (RCMU) hat Überstrom gemessen.</td>
<td>DC- und AC-Versorgung abschalten und warten, bis sich das Display ausschaltet. Anschließend DC- und AC-Versorgung einschalten und prüfen, ob das Ereignis erneut eintritt. Den Installateur kontaktieren, wenn das Ereignis erneut eintritt. Installateur: Sichtprüfung sämtlicher PV-Kabel und -Module durchführen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>AC-Netz nicht konform</td>
<td>AC-Netz liegt länger als zehn Minuten außerhalb des zulässigen Bereichs (Frequenz und/oder Spannung).</td>
<td>Den Installateur über Frequenz, Softwareversion und eingestellten Grid Code informieren. Installateur: AC-Installation prüfen.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>41-43</td>
<td>Es wurde vom Wechselrichter festgestellt, dass die Netzspannung unter einem bestimmten Niveau lag.</td>
<td>Den Installateur kontaktieren, wenn dieses Ereignis mehrmals am Tag eintritt. Installateur: Netzanalyse vor Ort durchführen.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PLA unterhalb des Grenzwerts</td>
<td>Der Wechselrichter wird vom Netz getrennt, wenn PLA unter 3 % der Nennleistung liegt.</td>
<td>Setzen Sie sich mit dem VNB in Verbindung und lassen Sie sich über den Status der Wirkleistungsminde rung (PLA) informieren.</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48-53</td>
<td>Netzfrequenz zu niedrig oder zu hoch</td>
<td>Installateur über die Netzfrequenz informieren. AC-Installation prüfen.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54-56</td>
<td>DC-Netzstrom zu hoch (Stufe 2).</td>
<td>Den Installateur kontaktieren, wenn dieses Ereignis mehrmals am Tag eintritt. Installateur: Netzanalyse vor Ort durchführen.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Es wurde ein Netzereignis erkannt, und der Wechselrichter wurde durch den redundanten Sicherheitskreis gestoppt.</td>
<td>Es wurde ein Netzereignis erkannt, und der Wechselrichter wurde durch den redundanten Sicherheitskreis gestoppt. Das Ereignisprotokoll überprüfen. Wenn die Mehrzahl der Einträge vom Typ 246 ist, die Serviceabteilung kontaktieren. Andernfalls 24 Stunden warten und erneut überprüfen.</td>
<td>-</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PV-bezogene Ereignisse

<table>
<thead>
<tr>
<th>ID</th>
<th>Statusmeldung</th>
<th>Beschreibung</th>
<th>Maßnahme</th>
<th>VNB</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-102</td>
<td>PV negativ</td>
<td>Eingangsstrom ist negativ, falsche Polarität.</td>
<td>Installateur kontaktieren. Installateur: Polarität prüfen, wenn diese korrekt ist, mit dem Service in Verbindung setzen.</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>ID</td>
<td>Statusmeldung</td>
<td>Beschreibung</td>
<td>Maßnahme</td>
<td>VNB</td>
<td>Hotline</td>
<td>PV</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>112-114</td>
<td>PV-Konfigurationsfehler</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>PV ISO zu niedrig</td>
<td>Der Widerstand zwischen den PV-Strings und der Masse ist für die Inbetriebnahme des Wechselrichters zu niedrig. Nach zehn Minuten führt der Wechselrichter automatisch eine neue Messung durch.</td>
<td>Sämtliche PV-Kabel und -Module per Sichtprüfung auf korrekte Installation gemäß Installationsanleitung prüfen. Das Ereignis deutet möglicherweise darauf hin, dass der PE-Anschluss fehlt.</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>116-118</td>
<td>PV, falsche Polarität</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>121-123, 125</td>
<td>PV ISO niedrig PV1, PV2, PV3, mehrere (bezogen auf 115)</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>PV-Spannung zu hoch/ wartend.</td>
<td>PV-Spannung ist zu hoch.</td>
<td>Prüfen, ob die Installation und die Auslegung den Empfehlungen in den Handbüchern entsprechen.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Tabelle 4.3 PV-bezogene Ereignisse

Internere Ereignisse

<table>
<thead>
<tr>
<th>ID</th>
<th>Statusmeldung</th>
<th>Beschreibung</th>
<th>Maßnahme</th>
<th>VNB</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201–208</td>
<td>Die Innentemperatur des Wechselrichters ist zu hoch.</td>
<td>Darauf achten, dass der Wechselrichter nicht abgedeckt und der Lüftungskanal nicht blockiert ist. Den Installateur kontaktieren, wenn dies nicht der Fall sein sollte.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>209, 210</td>
<td>Zu hohe Spannung am DC-Bus.</td>
<td>Wechselrichter durch Trennung der DC- und AC-Versorgung neustarten (mithilfe der Schalter). Den Installateur kontaktieren, wenn das Ereignis erneut auftritt. Installateur: Über das Display prüfen, ob die PV-Spannung den Höchstwert überschreitet.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Lüfterdrehzahl niedrig</td>
<td>Die Lüfterdrehzahl ist zu niedrig.</td>
<td>Ist der Lüfter des Wechselrichters blockiert? Ja: Lüfter reinigen, Nein: Installateur kontaktieren.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>212</td>
<td>DC-Bus-Timeout (Ausgleich)</td>
<td>Wechselrichter kann DC-Bus nicht ausgleichen.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>213–215</td>
<td>Intermer Fehler; gemessene Spannung vor und hinter dem Relais weicht um mehr als 20 V voneinander ab.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>216–221</td>
<td>Zu hoher gemessener Strom an der AC-Seite.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Statusmeldung</td>
<td>Beschreibung</td>
<td>Maßnahme</td>
<td>VNB</td>
<td>Hotline</td>
<td>PV</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-----</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>224</td>
<td>Fehlerstromüberwachungseinheit (RCMU) über zulässigem Bereich</td>
<td>Drahtbruch in der Fehlerstromüberwachungseinheit (RCMU).</td>
<td>Installateur kontaktieren. Installateur: Servicepartner kontaktieren, wenn Selbsttest nicht erfolgreich abgeschlossen wird.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>225–240</td>
<td>Störung im Speicher/EEPROM.</td>
<td>Wechselrichter neu starten. Den Selbsttest nicht erfolgreich abgeschlossen wird.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241, 242, 249</td>
<td>Interne Kommunikationsfehler.</td>
<td>Installateur kontaktieren, wenn das Ereignis andauert.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243, 244</td>
<td>Interne Fehler.</td>
<td>Installateur: Kundendienst anrufen.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>FSP-Plausibilitätsfehler</td>
<td>Im Prozessor für funktionale Sicherheit ist ein Plausibilitätsfehler aufgetreten.</td>
<td>Ereignisprotokoll auf andere Netzereignisse (1–55) prüfen und entsprechende Anweisungen für diese Ereignisse befolgen. Den Installateur kontaktieren, wenn das Ereignis andauert.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>248, 251</td>
<td>Selbsttest fehlgeschlagen, FSP ausfallsicher</td>
<td>Selbsttest ist fehlgeschlagen.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-254</td>
<td>Zu hoher gemessener Strom an der AC-Seite.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255–257</td>
<td>Inselbetriebsschutz ausgelöst.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Der Widerstand zwischen den PV-Strings und der Masse ist für die Inbetriebnahme des Wechselrichters zu niedrig. Nach zehn Minuten führt der Wechselrichter automatisch eine neue Messung durch.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261-262</td>
<td>PV-Strommessungen fehlgeschlagen.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>- x x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4.4 Interne Ereignisse

<table>
<thead>
<tr>
<th>ID</th>
<th>Beschreibung</th>
<th>Maßnahme</th>
<th>VNB</th>
<th>Hotline</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-271</td>
<td>Messkreistest fehlgeschlagen.</td>
<td>Wechselrichter neu starten. Den Installateur kontaktieren, wenn das Ereignis andauert. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>352</td>
<td>Selbsttest der Fehlerstromüberwachungseinheit (RCMU) fehlgeschlagen.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>353</td>
<td>Stromsensorstest fehlgeschlagen.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-363</td>
<td>Transistor- und Relais-Test fehlgeschlagen, oder Wechselrichterrelais defekt (Kontakt vermutlich geschweißt).</td>
<td>Installateur kontaktieren. Installateur: AC-installation auf Störungen am Neutraelleiteranschluss überprüfen. Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>364</td>
<td>Neutraelleiteranschluss ist beschädigt oder fehlt.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>Schutzleiter defekt.</td>
<td>Installateur kontaktieren. Installateur: Kundendienst anrufen.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 4.5 Durch den Selbsttest verursachte Ereignisse

4.2 Wartung

Der Wechselrichter erfordert im Normalfall keine Wartung oder Kalibrierung.

Sicherstellen, dass der Kühlkörper an der Rückseite des Wechselrichters nicht verdeckt wird.

Für korrekt Betrieb und eine lange Lebensdauer an folgenden Stellen freie Luftzirkulation sicherstellen:
rund um den Kühlkörper oben und seitlich am Wechselrichter (dort tritt die Luft aus) und zum Lüfter an der Unterseite des Wechselrichters hin.

Um Verstopfungen zu entfernen, mit Druckluft, einem weichen Tuch oder einer Bürste reinigen.

WARNUNG

Die Temperatur des Kühlkörpers kann 70 °C überschreiten.
5 Technische Daten

5.1 Spezifikationen

5.1.1 Spezifikationen zu den Wechselrichtern

<table>
<thead>
<tr>
<th>Nomenklatur</th>
<th>Parameter</th>
<th>FLX- Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Wechselspannung (AC)</td>
<td>[S]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_{ac,r}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wirklleistung bei cos(\phi) = 0,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wirklleistung bei cos(\phi) = 0,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blindleistungsbereich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{ac,r}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{nom}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC-Klirrfaktor (THD, bei Ausgangsnennleistung, in %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einschaltstrom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cos(\phi_{ac,r})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regelleistungs faktorbereich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standby-Verbrauch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{dc,r}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{mpmax}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{dcmax}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{test}</td>
</tr>
</tbody>
</table>
Technische Daten

<table>
<thead>
<tr>
<th>Nomenklatur</th>
<th>Parameter</th>
<th>FLX- Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{dcm}^{min}</td>
<td>Ausschaltspannung DC</td>
<td>220 V</td>
</tr>
<tr>
<td>I_{dcm}^{max}</td>
<td>Max. MPP-Strom</td>
<td>12 A pro PV-Eingang</td>
</tr>
<tr>
<td></td>
<td>Max. Kurzschlussstrom DC (bei Standardtestbedingungen)</td>
<td>13,5 A pro PV-Eingang</td>
</tr>
<tr>
<td>Mind.-Leistung am Netz</td>
<td>20 W</td>
<td></td>
</tr>
</tbody>
</table>

Wirkungsgrad

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Wirkungsgrad</td>
<td>97.9%</td>
<td>97.9%</td>
<td>97.9%</td>
<td>97.9%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Euro-Wirkungsgrad V bei dc,r</td>
<td>96.1%</td>
<td>96.4%</td>
<td>96.4%</td>
<td>97.1%</td>
<td>97.2%</td>
</tr>
</tbody>
</table>

Sonstiges

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abmessungen (H, B, T), Wechselrichter / einschl. Verpackung</td>
<td>667 x 500 x 233 mm / 774 x 570 x 356 mm</td>
</tr>
<tr>
<td>Montageempfehlung</td>
<td>Wandhalterung</td>
</tr>
<tr>
<td>Gewicht, Wechselrichter / einschl. Verpackung</td>
<td>38 kg / 44 kg</td>
</tr>
<tr>
<td>Geräuschbelastung4</td>
<td>-</td>
</tr>
<tr>
<td>MPP-Tracker</td>
<td>2</td>
</tr>
<tr>
<td>Betriebstemperaturen</td>
<td>-25...60 °C</td>
</tr>
<tr>
<td>Nenntemperaturbereich</td>
<td>-25...45 °C</td>
</tr>
<tr>
<td>Lagertemperatur</td>
<td>-25...60 °C</td>
</tr>
<tr>
<td>Überlastbetrieb</td>
<td>Betriebspunktänderung</td>
</tr>
<tr>
<td>Überspannungskategorien</td>
<td>Netz: Überspannungskategorie III (OVC III)</td>
</tr>
<tr>
<td></td>
<td>PV: Überspannungskategorie II (OVC II)</td>
</tr>
</tbody>
</table>

Tabelle 5.1 Spezifikationen

1. Bei einer Nenn-Netzspannung von $(V_{ac}, \cos(\phi))=1$.
2. Um den vollen Bereich zu nutzen, müssen asymmetrische Auslegungen beachtet werden, einschließlich Spannung bei Inbetriebnahme für mindestens einen String. Ob die Nennleistung erreicht wird, hängt von der Konfiguration ab.
4. SDP (Schalldruckpegel) bei 1 m unter normalen Betriebsbedingungen. Gemessen bei 25 °C.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLX- Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Wechselspannung (AC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[S] Nennwert Scheinleistung</td>
</tr>
<tr>
<td></td>
<td>P_{ac,r} Nenn-Wirkleistung¹</td>
</tr>
<tr>
<td></td>
<td>Wirkleistung bei cos(phi) = 0,95</td>
</tr>
<tr>
<td></td>
<td>Wirkleistung bei cos(phi) = 0,90</td>
</tr>
<tr>
<td></td>
<td>Blindleistungsbereich</td>
</tr>
<tr>
<td>(V_{ac,r}) AC-Nennspannung (AC-Spannungs-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bereich)</td>
</tr>
<tr>
<td></td>
<td>Nennstrom AC</td>
</tr>
<tr>
<td></td>
<td>I_{ac,max} Max. Strom AC</td>
</tr>
<tr>
<td></td>
<td>AC-Klirrfaktor (THD, bei Ausgangsnenn-</td>
</tr>
<tr>
<td></td>
<td>leistung, in %)</td>
</tr>
<tr>
<td></td>
<td>Einschaltstrom</td>
</tr>
<tr>
<td></td>
<td>cosphi_{ac,r} Leistungsfaktor bei 100 %</td>
</tr>
<tr>
<td></td>
<td>Last</td>
</tr>
<tr>
<td></td>
<td>Regelleistungs-</td>
</tr>
<tr>
<td></td>
<td>faktbereich</td>
</tr>
<tr>
<td></td>
<td>Standby-Verbrauch</td>
</tr>
<tr>
<td></td>
<td>f_r Nenn-Netzfrequenz (Bereich)</td>
</tr>
<tr>
<td>Gleichstrom (DC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. PV-Eingangs-</td>
</tr>
<tr>
<td></td>
<td>leistung per MPPT</td>
</tr>
<tr>
<td></td>
<td>Nennleistung DC</td>
</tr>
<tr>
<td></td>
<td>(V_{dc,r}) Nennspannung DC</td>
</tr>
<tr>
<td></td>
<td>(V_{damin}) / (V_{mpmax})</td>
</tr>
<tr>
<td></td>
<td>MPP-Wirkungsgrad (statisch)</td>
</tr>
<tr>
<td></td>
<td>MPP-Wirkungsgrad (dynamisch)</td>
</tr>
<tr>
<td></td>
<td>(V_{damax}) Max. Gleichspannung</td>
</tr>
<tr>
<td></td>
<td>(V_{dastart}) Einschaltspannung DC</td>
</tr>
<tr>
<td></td>
<td>(V_{damin}) Ausschaltspannung DC</td>
</tr>
<tr>
<td></td>
<td>(I_{dc,max}) Max. MPP-Strom</td>
</tr>
<tr>
<td></td>
<td>Max. Kurzschlussstrom DC (bei Standardtest-</td>
</tr>
<tr>
<td></td>
<td>bedingungen)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind.-Leistung am Netz</td>
</tr>
</tbody>
</table>
Technische Daten

<table>
<thead>
<tr>
<th>Nomenklatur</th>
<th>Parameter</th>
<th>FLX- Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Wirkungsgrad
- Max. Wirkungsgrad: 97.9% / 98.0% / 98.0% / 98.1%
- Euro-Wirkungsgrad V bei dc,r: 97.2% / 97.3% / 97.4% / 97.6%

Sonstiges
- Abmessungen (H, B, T), Wechselrichter / einschl. Verpackung: 667 x 500 x 233 mm / 774 x 570 x 356 mm
- Montageempfehlung: Wandhalterung
- Gewicht, Wechselrichter / einschl. Verpackung: 38 kg / 44 kg / 39 kg / 45 kg
- Geräuschbelastung*: - / 55 dB(A)
- MPP-Tracker: 2 / 3
- Betriebstemperaturbereich: -25...60 °C
- Nenntemperaturbereich: -25...45 °C
- Lagertemperatur: -25...60 °C
- Überlastbetrieb: Betriebspunktänderung
- Überspannungskategorien: Netz: Überspannungskategorie III (OVC III) / PV: Überspannungskategorie II (OVC II)

Tabelle 5.2 Spezifikationen

1. Bei einer Nenn-Netzspannung von (V_{ac,r}), Cos(\phi)=1.
2. Um den vollen Bereich zu nutzen, müssen asymmetrische Auslegungen beachtet werden, einschließlich Spannung bei Inbetriebnahme für mindestens einen String. Ob die Nennleistung erreicht wird, hängt von der Konfiguration ab.
4. SDP (Schalldruckpegel) bei 1 m unter normalen Betriebsbedingungen. Gemessen bei 25 °C.
5. Fernsteuerung über externes Gerät.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLX-Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steckverbindertyp</td>
<td>Sunclix</td>
</tr>
<tr>
<td>Möglichkeit zur parallelen Stringver- schaltung</td>
<td>Ja</td>
</tr>
<tr>
<td>Schnittstelle</td>
<td>Ethernet (Web-Schnittstelle), RS-485</td>
</tr>
<tr>
<td>Optionen</td>
<td>GSM-Option Kit, Sensorschnittstellenoption, PLA-Option</td>
</tr>
<tr>
<td>PV-Sweep</td>
<td>Ja</td>
</tr>
<tr>
<td>Überlastbetrieb</td>
<td>Betriebspunktänderung</td>
</tr>
<tr>
<td>Nutzungserfüllende Funktionen</td>
<td>Fault Ride Through</td>
</tr>
<tr>
<td>Wirkleistungsregelung*</td>
<td>Integriert oder über externes Gerät</td>
</tr>
<tr>
<td>Blindleistungsregelung*</td>
<td>Ja</td>
</tr>
<tr>
<td>DC-Kurzschluss schutz</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Tabelle 5.3 Wechselrichtermerkmale und -funktionen

* Fernsteuerung über externes Gerät.
Technische Daten

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLX-Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrisch</td>
<td></td>
</tr>
<tr>
<td>Sicherheit (Schutzklasse)</td>
<td>Klasse I (geerdet)</td>
</tr>
<tr>
<td>PELV auf der Kommunikations- und Steuerkarte</td>
<td>Klasse II</td>
</tr>
<tr>
<td>Überspannungskategorien</td>
<td>Netz: Überspannungskategorie III (OVC III) PV: Überspannungskategorie II (OVC II)</td>
</tr>
<tr>
<td>Funktional</td>
<td></td>
</tr>
<tr>
<td>Inselbetriebserkennung – Netzausfall</td>
<td>Trennung</td>
</tr>
<tr>
<td>– Dreiphasenüberwachung</td>
<td></td>
</tr>
<tr>
<td>– ROCOF</td>
<td></td>
</tr>
<tr>
<td>Spannungsamplitude</td>
<td>Trennung, enthalten</td>
</tr>
<tr>
<td>Frequenz</td>
<td>Trennung, enthalten</td>
</tr>
<tr>
<td>Gleichstromanteil im Wechselstrom</td>
<td>Trennung, enthalten</td>
</tr>
<tr>
<td>Isolationswiderstand</td>
<td>Anschluss verhindert, enthalten</td>
</tr>
<tr>
<td>Fehlerstromüberwachungseinheit (RCMU) – Typ B</td>
<td>Trennung, enthalten</td>
</tr>
</tbody>
</table>

| Tabelle 5.4 Sicherheitsspezifikationen |

5.2 Grenzwerte für die Reduzierung des Auslegungsverhältnisses

Um sicherzustellen, dass die Wechselrichter die Nennleistung erzeugen können, werden bei der Durchsetzung der in Tabelle 5.5 angegebenen Leistungsreduzierungs grenzwerte etwaige Messungsauigkeiten berücksichtigt.

(Grenzwert = Nennwert + Toleranz).

<table>
<thead>
<tr>
<th>FLX-Serie</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzstrom, pro Phase</td>
<td>7,5 A</td>
<td>9,0 A</td>
<td>10,6 A</td>
<td>12,1 A</td>
<td>13,6 A</td>
<td>15,1 A</td>
<td>18,8 A</td>
<td>22,6 A</td>
<td>25,6 A</td>
</tr>
<tr>
<td>Netzleistung, gesamt</td>
<td>5150 W</td>
<td>6180 W</td>
<td>7210 W</td>
<td>8240 W</td>
<td>9270 W</td>
<td>10300 W</td>
<td>12875 W</td>
<td>15450 W</td>
<td>17510 W</td>
</tr>
</tbody>
</table>

| Tabelle 5.5 Grenzwerte für die Reduzierung des Auslegungsverhältnisses |

5.3 Konformität

<table>
<thead>
<tr>
<th>FLX-Serie</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internationale Normen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-Niederspannungsrichtlinie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006/95/EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-Richtlinie zur elektromagnetischen Verträglichkeit (EMV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2004/108/EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherheit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IEC 62109-1/IEC 62109-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrierter PV-Trennschalter (DC-Schalter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VDE 0100-712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionsale Sicherheit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IEC 62109-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMV-Störfestigkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EN 61000-6-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| EN 61000-6-2 | | | | | | | | | |
Technische Daten

<table>
<thead>
<tr>
<th>EMV-Störaussendung</th>
<th>EN 61000-6-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberschwingungsströme</td>
<td>EN 61000-3-2/-3</td>
</tr>
<tr>
<td>CE</td>
<td>Ja</td>
</tr>
<tr>
<td>Eigenschaften des Versorgungsnetzes</td>
<td>IEC 61727</td>
</tr>
<tr>
<td>S0-Stromzähler (optional)</td>
<td>EN 50160</td>
</tr>
<tr>
<td></td>
<td>EN 62053-31 Anhang D</td>
</tr>
</tbody>
</table>

Tabelle 5.6 Konformität mit internationalen Normen

5.4 Installationsbedingungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Technische Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>−25 °C - +60 °C</td>
</tr>
<tr>
<td>Relative Luftfeuchtigkeit</td>
<td>95 % (nicht kondensierend)</td>
</tr>
<tr>
<td>Verschmutzungsgrad</td>
<td>PD2</td>
</tr>
<tr>
<td>Umgebungsklassifizierung</td>
<td>IEC 60721-3-3</td>
</tr>
<tr>
<td>Luftqualität – Allgemein</td>
<td>ISA S71.04-1985</td>
</tr>
<tr>
<td>Luftqualität – an der Küste, in Industriegebieten und landwirtschaftlichen Regionen</td>
<td>Muss gemäß ISA S71.04-1985 gemessen und eingestuft werden</td>
</tr>
<tr>
<td>Vibrationen</td>
<td>1G</td>
</tr>
<tr>
<td>Schutzart des Produkts beachten</td>
<td>IP65</td>
</tr>
<tr>
<td>Max. Betriebshöhe</td>
<td>2000 m über NN.</td>
</tr>
<tr>
<td>Installation</td>
<td>Ständigen Kontakt mit Wasser vermeiden.</td>
</tr>
<tr>
<td></td>
<td>Direkte Sonneneinstrahlung vermeiden.</td>
</tr>
<tr>
<td></td>
<td>Ausreichende Belüftung sicherstellen.</td>
</tr>
<tr>
<td></td>
<td>Auf nicht entflammbarer Oberfläche montieren.</td>
</tr>
<tr>
<td></td>
<td>Gerade auf vertikaler Oberfläche montieren.</td>
</tr>
<tr>
<td></td>
<td>Staub und Ammoniakgase vermeiden.</td>
</tr>
<tr>
<td></td>
<td>Der FLX Wechselrichter ist für den Außenbereich geeignet.</td>
</tr>
</tbody>
</table>

Tabelle 5.7 Installationsbedingungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bedingung</th>
<th>Technische Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandhalterung</td>
<td>Bohrungsdurchmesser</td>
<td>30 x 9 mm</td>
</tr>
<tr>
<td></td>
<td>Ausrichtung</td>
<td>Senkrecht ±5° alle Winkel</td>
</tr>
</tbody>
</table>

Tabelle 5.8 Spezifikationen der Wandhalterung

5.4.1 Französische UTE-Anforderungen

HINWEIS

In Frankreich sind die Anforderungen nach UTE C 15-712-1 und NF C 15-100 zu beachten.

Bringen Sie bei Installationen in Frankreich ein Warnschild an der Vorderseite des Wechselrichters an.
5.5 Kabelspezifikationen

HINWEIS
Halten Sie sich an die Vorgaben in den Tabellen und Abbildungen, einen Verlust größer 1 % zur Wechselrichter-Nennleistung zu vermeiden.

HINWEIS
In der Tabelle sind nur Kabellängen von weniger als 100 m angegeben.

Technische Daten FLX-Serie

<table>
<thead>
<tr>
<th>AC-Kabelgröße</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12,5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 mm²</td>
<td>43 m</td>
<td>36 m</td>
<td>31 m</td>
<td>27 m</td>
<td>24 m</td>
<td>21 m</td>
<td>1)</td>
<td>1)</td>
<td>1)</td>
</tr>
<tr>
<td>4 mm²</td>
<td>69 m</td>
<td>57 m</td>
<td>49 m</td>
<td>43 m</td>
<td>38 m</td>
<td>34 m</td>
<td>27 m</td>
<td>2)</td>
<td>2)</td>
</tr>
<tr>
<td>6 mm²</td>
<td>86 m</td>
<td>74 m</td>
<td>64 m</td>
<td>57 m</td>
<td>52 m</td>
<td>41 m</td>
<td>34 m</td>
<td>30 m</td>
<td></td>
</tr>
<tr>
<td>10 mm²</td>
<td></td>
<td></td>
<td></td>
<td>95 m</td>
<td>86 m</td>
<td>69 m</td>
<td>57 m</td>
<td>51 m</td>
<td></td>
</tr>
<tr>
<td>16 mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92 m</td>
<td>81 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5.9 AC-Kabelspezifikationen

1) Die Verwendung eines Kabels mit einem Durchmesser unter 4 mm² wird nicht empfohlen.

2) Die Verwendung eines Kabels mit einem Durchmesser unter 6 mm² wird nicht empfohlen.

Technische Daten

<table>
<thead>
<tr>
<th>DC-Kabeltyp</th>
<th>Min. 1000 V, 13,5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-Kabelquerschnitt 4 mm² - 4,8 Ω/km</td>
<td>< 200 m²</td>
</tr>
<tr>
<td>DC-Kabelquerschnitt 6 mm² - 3,4 Ω/km</td>
<td>200-300 m²</td>
</tr>
</tbody>
</table>

Tabelle 5.10 DC-Kabelspezifikationen

* Der Abstand zwischen Wechselrichter und PV-String und zurück sowie die Gesamtlänge der Kabel für die Installation des PV-Arrays.

Bei der Auswahl von Kabeltyp und -querschnitt ist außerdem Folgendes zu berücksichtigen:

- Umgebungstemperatur
- Kabelverlegung (Verlegung in der Wand, Erdverlegung, Freiverlegung usw.)
- UV-Beständigkeit
Abbildung 5.2 FLX-Serie 5, Kabelverluste [%] gegenüber Kabellänge [m]

Abbildung 5.3 FLX-Serie 6, Kabelverluste [%] gegenüber Kabellänge [m]

Abbildung 5.4 FLX-Serie 7, Kabelverluste [%] gegenüber Kabellänge [m]

Abbildung 5.5 FLX-Serie 8, Kabelverluste [%] gegenüber Kabellänge [m]

Abbildung 5.6 FLX-Serie 9, Kabelverluste [%] gegenüber Kabellänge [m]

Abbildung 5.7 FLX-Serie 10, Kabelverluste [%] gegenüber Kabellänge [m]
5.6 Drehmomentvorgaben

Abbildung 5.11 Überblick über Wechselrichter mit Drehmomentvorgaben

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werkzeug</th>
<th>Anzugsmoment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M16-Kabelverschraubung</td>
<td>Schlüssel 19 mm</td>
<td>3,75 Nm</td>
</tr>
<tr>
<td>1 M16-Kabelverschraubung, Überwurfmutter</td>
<td>Schlüssel 19 mm</td>
<td>2,5 Nm</td>
</tr>
<tr>
<td>2 M25-Kabelverschraubung</td>
<td>Schlüssel 27 mm</td>
<td>7,5 Nm</td>
</tr>
<tr>
<td>2 M25-Kabelverschraubung, Überwurfmutter</td>
<td>Schlüssel 27 mm</td>
<td>5,0 Nm</td>
</tr>
<tr>
<td>3 Vordere Schraube</td>
<td>Torx TX 20</td>
<td>1,5 Nm</td>
</tr>
</tbody>
</table>

Tabelle 5.11 Nm-Spezifikationen
5.7 Spezifikation für die Netzsicherungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werkzeug</th>
<th>Anzugsmoment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M32-Kabelverschraubung</td>
<td>Schlüssel 42 mm</td>
<td>7,5 Nm</td>
</tr>
<tr>
<td>2 M32-Kabelverschraubung, Überwurfmutter</td>
<td>Schlüssel 42 mm</td>
<td>5,0 Nm</td>
</tr>
<tr>
<td>3 Klemmen an AC-Klemmenleiste</td>
<td>Pozidriv PZ2 oder Schlitz 1,0 x 5,5 mm</td>
<td>2,0 - 4,0 Nm</td>
</tr>
<tr>
<td>4 PE</td>
<td>Torx TX 20 oder Schlitz 1,0 x 5,5 mm</td>
<td>2,2 Nm</td>
</tr>
</tbody>
</table>

Tabelle 5.12 Nm-Spezifikationen

*) Wählen Sie nur Sicherungen, die den nationalen Vorschriften entsprechen.
5.8 Technische Daten der Hilfsschnittstelle

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Parameter</th>
<th>Parameterdetails</th>
<th>Technische Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 und Ethernet</td>
<td>Kabel</td>
<td>Durchmesser Kabelmantel (⌀)</td>
<td>2 x 5-7 mm</td>
</tr>
<tr>
<td></td>
<td>Kabeltyp</td>
<td>STP-Kabel (Shielded Twisted Pair, CAT 5e oder SFTP CAT 5e) 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wellenwiderstand (Impedanz) der Kabel</td>
<td>100 Ω – 120 Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RJ-45-Steckverbinder:</td>
<td>Drahtstärke</td>
<td>24–26 AWG (*je nach Ausführung des RJ-45-Steckers)</td>
</tr>
<tr>
<td></td>
<td>2 x RJ-45 für RS-485</td>
<td>Kabelschirmabschluss</td>
<td>Über RJ-45-Stecker</td>
</tr>
<tr>
<td></td>
<td>2 x RJ-45 für Ethernet</td>
<td>Galvanische Schnittstellen-trennung</td>
<td>Ja, 500 Veff</td>
</tr>
<tr>
<td></td>
<td>Direkter Berührungsschutz</td>
<td>Doppelte/verstärkte Isolierung</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>Kurzschlussschutz</td>
<td>Über RJ-45-Stecker</td>
<td></td>
</tr>
<tr>
<td>Nur RS-485</td>
<td>Kabel</td>
<td>Max. Kabellänge</td>
<td>1000 m</td>
</tr>
<tr>
<td></td>
<td>Max. Anzahl Wechselrichterknoten</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Nur Ethernet</td>
<td>Kommunikation</td>
<td>Netzwerktopologie</td>
<td>Sternverbindung und verkettete Verbindung</td>
</tr>
<tr>
<td></td>
<td>Kabel</td>
<td>Max. Kabellänge zwischen Wechselrichtern</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Max. Anzahl der Wechselrichter</td>
<td>1001)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5.14 Technische Daten der Hilfsschnittstelle

2) Für den Einsatz in Außenbereichen wird sowohl für Ethernet als auch für RS-485 ein Erdkabel (unterirdisch verlegt) empfohlen.

5.9 RS-485- und Ethernet-Anschlüsse

RS-485

Der RS-485-Kommunikationsbus muss an beiden Kabelenden abgeschlossen werden.

- Wenn kein RJ-45-Stecker in die Buchse einge steckt wird, erfolgt der Abschluss automatisch. Ohne Gegenstecker sind sowohl Abschluss als auch Bias möglich.

- In seltenen Fällen ist Bias unerwünscht, ein Abschluss jedoch erforderlich. Um den RS-485-Bus abzuschließen, einen Abschlusswiderstand (100 Ω) in einen vor Ort montierbaren RJ-45-Steckverbinder einsetzen. Diesen Steckverbinder (mit Widerstand) in den nicht belegten RJ-45-Steckverbinder stecken.

Die RS-485-Adresse des Wechselrichters ist eindeutig und wird werkseitig definiert.

Abbildung 5.13 Zusatzschnittstellen
Abbildung 5.14 Pinbelegung des RJ-45-Steckers für RS-485

<table>
<thead>
<tr>
<th>Pinbelegung</th>
<th>Farbstandard</th>
<th>Kat. 5</th>
<th>Kat. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. RX/TX A (-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. BIAS L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. BIAS H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. RX/TX B (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Kein Anschluss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Kein Anschluss</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fett = Obligatorisch. Cat5-Kabel enthält alle acht Drähte. Für Ethernet: 10Base-TX und 100Base-TX Auto Cross-Over.

Abbildung 5.15 Pinbelegung des RJ-45-Steckers für Ethernet

<table>
<thead>
<tr>
<th>Pinbelegung Ethernet</th>
<th>Farbstandard</th>
<th>Kat. 5 T-568A</th>
<th>Kat. 5 T-568B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RX+</td>
<td>Grün/Weiß</td>
<td>Orange/Weiβ</td>
<td></td>
</tr>
<tr>
<td>2. RX</td>
<td>Grün</td>
<td>Orange</td>
<td></td>
</tr>
<tr>
<td>3. TX+</td>
<td>Orange/Weiβ</td>
<td>Grün/Weiβ</td>
<td></td>
</tr>
<tr>
<td>4. Blau</td>
<td>Blau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Blau/Weiβ</td>
<td>Blau/Weiβ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. TX-</td>
<td>Orange</td>
<td>Grün</td>
<td></td>
</tr>
<tr>
<td>7. Braun/Weiβ</td>
<td>Braun/Weiß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Braun</td>
<td>Braun</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.9.1 Netzwerktopologie

HINWEIS

Eine Ringtopologie ist nicht zulässig.
Abbildung 5.16 Netzwerktopologie

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linienförmige „Daisy Chain“-Verbindungen</td>
</tr>
<tr>
<td>2</td>
<td>Sterntopologie</td>
</tr>
<tr>
<td>3</td>
<td>Ringtopologie (nicht zulässig)</td>
</tr>
<tr>
<td>4</td>
<td>(Ethernet-Switch)</td>
</tr>
</tbody>
</table>

HINWEIS

Sécurité et conformité

Types de messages de sécurité

Les symboles suivants sont utilisés dans ce document :

⚠️ DANGER
Signale une situation potentiellement dangereuse pouvant entraîner la mort.

⚠️ AVERTISSEMENT
Signale une situation potentiellement dangereuse pouvant entraîner la mort ou des blessures graves.

⚠️ ATTENTION
Signale une situation potentiellement dangereuse pouvant entraîner des blessures légères ou modérées. Il peut également être utilisé pour vous mettre en garde contre des pratiques dangereuses.

⚠️ AVIS
Signale des informations importantes, notamment sur des situations pouvant entraîner des dommages sur les équipements ou d'autres biens.

Sécurité générale

Toutes les personnes amenées à installer et entretenir des onduleurs doivent :

- être formées et expérimentées en matière de consignes de sécurité générales pour toute intervention sur des équipements électriques ;
- être au fait des exigences, règles et règlements locaux en matière d'installation.

⚠️ AVIS
Avant l'installation
Contrôler l'état de l'équipement et de son emballage. En cas de doute, contacter le fournisseur avant de commencer l'installation.

⚠️ ATTENTION
Installation
Pour garantir une sécurité optimale, observer les étapes décrites dans ce document. Garder à l'esprit que l'onduleur possède 2 côtés sous tension : l'entrée PV et le réseau CA.

⚠️ AVERTISSEMENT
Déconnexion de l'onduleur
Avant d'intervenir sur l'onduleur, couper l'alimentation CA au niveau de l'interrupteur secteur et l'alimentation PV en utilisant l'interrupteur PV. Veiller à empêcher tout rebranchement accidentel de l'appareil. Utiliser un testeur de tension afin de vérifier que l'appareil est débranché et hors tension. L'onduleur peut toujours être chargé avec une très haute tension, à des niveaux dangereux, même lorsqu'il est déconnecté du réseau CA et des modules solaires. Après déconnexion du réseau et des panneaux PV, attendre au moins 8 minutes avant de continuer.

Pour une déconnexion sûre du courant CC, éteindre l'interrupteur PV (1).
ATTENTION

Maintenance et modification
Seul du personnel agréé est autorisé à modifier l'onduleur. Pour garantir la sécurité des personnes, utiliser uniquement des pièces de rechange d'origine disponibles auprès du fournisseur. Dans le cas contraire, la conformité aux directives CE dans le cadre de la sécurité électrique, de la compatibilité électromagnétique (CEM) et de la sécurité des machines n'est pas garantie.

La température des refroidisseurs et des composants de refroidissement à l'intérieur de l'onduleur peut dépasser 70 °C. Ne pas négliger le risque de brûlures.

Un système PV abrite des tensions CC allant jusqu'à 1000 V, y compris lorsque l'onduleur est déconnecté du réseau CA. Tout défaut ou erreur d'utilisation peut provoquer un arc électrique.

AVERTISSEMENT

Les modules photovoltaïques génèrent de la tension lorsqu'ils sont exposés à la lumière.

AVERTISSEMENT

Ne pas intervenir sur l'onduleur lors de la déconnexion CC et CA.

Le courant de court-circuit des panneaux photovoltaïques n'est que faiblement supérieur au courant de service maximal et il dépend de l'intensité du rayonnement solaire.

Conformité

Pour plus d'informations, accéder à la rubrique de téléchargement à l'adresse www.SMA.de, Agréments et certifications.

Voir aussi 5 Technical Data.

Marquage CE - Ce symbole certifie la conformité de l'équipement aux exigences des directives CE en vigueur.
Table des matières

1 Introduction

1.1 Objet du manuel 105
1.2 Version du logiciel 105
1.3 Pièces de rechange 106
1.4 Déballage 106
1.5 Identification de l'onduleur 106
1.6 Séquence d'installation 106
1.7 Retour et mise au rebut 107
 1.7.1 Retour 107
 1.7.2 Mise au rebut 107
1.8 Présentation de la zone d'installation 108

2 Installation

2.1 Environnement et dégagements 109
2.2 Montage de la plaque de montage 110
2.3 Montage de l'onduleur 111
2.4 Démontage de l'onduleur 112
2.5 Accès à la zone d'installation 112
2.6 Raccordement au réseau CA 113
2.7 Connexions RS-485 ou Ethernet 114
2.8 Options 114
2.9 Fermeture 115
2.10 Connexion PV 115
 2.10.1 Classe de protection pour les modules PV 116

3 Configuration initiale et démarrage

3.1 Interface utilisateur 117
 3.1.1Modes de fonctionnement 117
 3.1.2 Niveau de sécurité 117
 3.1.3 Préparation pour onduleur maître 118
 3.1.4 Configuration PV manuelle 118
3.2 Écran 119
 3.2.1 Configuration initiale par l'écran 119
 3.2.2 Activer l'interrupteur PV 122
 3.2.3 Mise en service 122
 3.2.4 Procédure de test automatique 123
3.3 Interface Web 123
 3.3.1 Préparation de la configuration 123
 3.3.3 Assistant de configuration 123
 3.4 Interface Web 130
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5 Vues de l'onduleur, du groupe et de l'installation</td>
<td>131</td>
</tr>
<tr>
<td>3.3.6 Procédure de test automatique</td>
<td>132</td>
</tr>
<tr>
<td>4 Service</td>
<td>133</td>
</tr>
<tr>
<td>4.1 Dépannage</td>
<td>133</td>
</tr>
<tr>
<td>4.2 Maintenance</td>
<td>136</td>
</tr>
<tr>
<td>5 Données techniques</td>
<td>137</td>
</tr>
<tr>
<td>5.1 Spécifications</td>
<td>137</td>
</tr>
<tr>
<td>5.1.1 Spécifications de l'onduleur</td>
<td>137</td>
</tr>
<tr>
<td>5.2 Limites de réduction</td>
<td>141</td>
</tr>
<tr>
<td>5.3 Conformité</td>
<td>141</td>
</tr>
<tr>
<td>5.4 Conditions d'installation</td>
<td>142</td>
</tr>
<tr>
<td>5.5 Spécifications des câbles</td>
<td>143</td>
</tr>
<tr>
<td>5.6 Spécifications de couple</td>
<td>145</td>
</tr>
<tr>
<td>5.7 Spécifications du secteur</td>
<td>146</td>
</tr>
<tr>
<td>5.8 Spécifications de l'interface auxiliaire</td>
<td>146</td>
</tr>
<tr>
<td>5.9 Connexions RS-485 et Ethernet</td>
<td>147</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Objet du manuel

Le Guide d'installation donne les informations nécessaires à l'installation et la mise en service de l'onduleur FLX.

Ressources supplémentaires disponibles :

- *Guide de l’utilisateur* donnant les informations nécessaires à la configuration et la surveillance de l'onduleur par l'intermédiaire de l'écran ou de l'interface Web

- *Guide de conception* donnant les informations nécessaires à l'utilisation de la planification de l'onduleur dans diverses applications d'énergie solaire

- *Guide d'installation de l'option Sensor Interface* pour l'installation et la mise en service de l'option interface capteur

- *Guide d'installation du kit d'option GSM* donnant les informations requises pour l'installation d'une option GSM et la configuration de l'envoi de données et de messages à partir de l'onduleur

- *Guide du kit d'option PLA*, donnant les informations nécessaires à l'installation et la configuration de l'option PLA pour connecter un récepteur de télécommande centralisée à l'onduleur

- *Instructions d'installation du ventilateur* donnant les informations nécessaires au remplacement d'un ventilateur

Ces documents sont disponibles dans la rubrique de téléchargement à l'adresse www.SMA.de, ou auprès du fournisseur de l'onduleur solaire.

Les onduleurs de la gamme FLX présentent les caractéris- tiques suivantes :

- Protection IP65
- Interrupteur PV
- Connecteurs Sunclix pour entrée photovoltaïque
- Accès manuel à la configuration et à la surveillance de l'onduleur via l'affichage
- Fonctionnalités de services auxiliaires. Se reporter au *Guide de conception de la gamme FLX* pour plus de détails.
- Accès à la configuration et à la surveillance de l'onduleur via l'interface Web

1.2 Version du logiciel

Ce manuel concerne le logiciel de l'onduleur en version 2.05 et supérieure. Pour connaître la version du logiciel, que ce soit via l'écran ou l'interface web (niveau onduleur), consulter [Etats → Onduleur → N° série et ver. logiciel → Onduleur].
AVIS:
La version du logiciel au moment de la publication du manuel est la version 2.05. Pour plus d'informations concernant la version actuelle du logiciel, consulter www.SMA.de.

1.3 Pièces de rechange
Contacter SMA Solar Technology AG pour obtenir des informations sur les pièces de rechange, les références et la procédure de commande.

1.4 Déballage
Contenu :
- Onduleur
- Plaque de montage
- Sac d'accessoires, contenant : 3 vis de montage, 2 presse-étoupe, 2 coupelles en caoutchouc, 1 vis de mise à la terre et 1 étiquette de sécurité propre au marché français.
- 4 à 6 pièces homologues Sunclix, selon le nombre de MPPT pour le FLX Pro 5-17.
- Guide d'installation, format livret
- Guide rapide, format affiche

Les éléments suivants ne sont pas fournis :
- Vis de sécurité, M5 x 8-12, en option (produit non disponible auprès de SMA Solar Technology AG)

1.5 Identification de l'onduleur

L'étiquette du produit apposée sur le côté de l'onduleur indique les éléments suivants :
- Type d'onduleur
- Spécifications importantes
- Numéro de série, situé sous le code à barres, pour l'identification de l'onduleur.

1.6 Séquence d'installation
1. Tenir particulièrement compte de la section 1.1 Safety Message Types.
2. Installer l'onduleur en respectant les sections 2.1 Environment and Clearances, 2.2 Mounting the Mounting Plate et 2.3 Mounting the Inverter.
3. Ouvrir l'onduleur en respectant les consignes de la section 2.5 Access to the Installation Area.
4. Installer le CA en respectant les consignes de la section 2.6 AC Grid Connection.
5. Installer RS-485 ou Ethernet, le cas échéant, selon la section 2.7 RS-485 or Ethernet Connections.
6. Installer les options, le cas échéant, conformément au guide d'installation fourni avec l'option.
7. Fermer l'onduleur en respectant les consignes de la section 2.5 Access to the Installation Area.
8. Installer le PV en respectant les consignes de la section 2.10 PV Connection.
9. Allumer le CA avec l'interrupteur secteur.
10. Régler la langue, le mode maître, l'heure, la date, la puissance PV installée, le pays et le code réseau :
 - Pour la configuration par l'interface Web, se reporter à la section 3.3 Web Interface.
 - Pour la configuration via l'écran, se reporter à la section 3.2 Display.
11. Allumer le PV en plaçant l'interrupteur PV sur la position active. Se reporter à la section 2.10.1 Connection of PV.
12. Vérifier l'installation en consultant le résultat de la détection automatique indiqué à l'écran comme décrit dans la section 2.10 PV Connection.
13. L'onduleur est maintenant en fonctionnement.

Pour l'installation et la configuration de plusieurs onduleurs FLX Pro en une configuration maître-suiveurs :
- Réaliser les étapes 2 à 9 et 11 pour chaque onduleur.
- Réaliser l'étape 10 sur l'onduleur planifié comme maître.
- Réaliser l'étape 12.
1.7 Retour et mise au rebut

Lorsqu’un onduleur est remplacé, il peut être renvoyé au distributeur, directement à SMA Solar Technology AG, ou mis au rebut conformément aux réglementations locales et nationales. SMA Solar Technology AG est très attaché à sa politique de responsabilité environnementale et demande par conséquent aux utilisateurs mettant au rebut les onduleurs de respecter la législation locale en matière d’environnement et de rechercher des modes de mise au rebut sûrs et responsables.

1.7.1 Retour

En cas de retour à SMA Solar Technology AG, l’onduleur doit toujours se trouver dans son emballage d’origine ou équivalent. Si le produit est retourné suite à une panne de l’onduleur, contacter le fournisseur de l’onduleur SMA Solar Technology AG.

Pour connaître les conditions d’expédition du retour et d’autres précisions, contacter l’assistance téléphonique SMA Solar Technology AG.

1.7.2 Mise au rebut

1.8 Présentation de la zone d'installation

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interface RS-485</td>
</tr>
<tr>
<td>2</td>
<td>Fente d’option A (peut être utilisée pour l’option GSM, l’option interface capteur ou l’option PLA)</td>
</tr>
<tr>
<td>3</td>
<td>Interface Ethernet</td>
</tr>
<tr>
<td>4</td>
<td>Fente d’option A (peut être utilisée pour l’option GSM, l’option interface capteur ou l’option PLA)</td>
</tr>
<tr>
<td>5</td>
<td>Zone de connexion PV</td>
</tr>
<tr>
<td>6</td>
<td>Carte de communication</td>
</tr>
<tr>
<td>7</td>
<td>Bornier CA</td>
</tr>
<tr>
<td>8</td>
<td>Position de la vis de sécurité</td>
</tr>
<tr>
<td>9</td>
<td>Interrupteur PV</td>
</tr>
<tr>
<td>10</td>
<td>Position de la vis de sécurité</td>
</tr>
</tbody>
</table>

PELV (peuvent être touchés sans danger)

Illustration 1.3 Présentation de la zone d'installation
2 Installation

2.1 Environnement et dégagements

Illustration 2.1 Éviter toute exposition continue à l'eau

Illustration 2.2 Éviter la lumière directe du soleil

Illustration 2.3 Prévoir une circulation d'air adéquate

Illustration 2.4 Prévoir une circulation d'air adéquate

Illustration 2.5 Monter sur une surface non inflammable

Illustration 2.6 Installer à la verticale sur une surface verticale. Une inclinaison inférieure ou égale à 10 degrés est permise.

Illustration 2.7 Éviter la présence de poussière et de gaz ammoniac

AVIS!

Lors de la planification du site d'installation, vérifier que toutes les étiquettes d'avertissement et de l'onduleur resteront visibles. Pour plus de détails, se reporter à la section 5 Technical Data.
2.2 Montage de la plaque de montage

Illustration 2.8 Dégagements de sécurité

AVIS:
Veiller à un dégagement de 620 mm à la base pour que l'air circule correctement.
2.9 Plaque de montage

AVIS!
Il est obligatoire d'utiliser la plaque de montage fournie avec l'onduleur.

Monter la plaque de montage :
- Monter dans l'environnement défini.
- Utiliser des vis et des tamponnoirs capables de supporter le poids de l'onduleur en toute sécurité.
- Vérifier que la plaque de montage est correctement alignée.
- Respecter les dégagements de sécurité pour l'installation d'un ou plusieurs onduleurs afin que l'air circule correctement. Les dégagements sont spécifiés sur l'Illustration 2.8 et sur l'étiquette de la plaque de montage.
- Il est préconisé d'installer plusieurs onduleurs sur une même ligne. Contacter le fournisseur pour des directives lors du montage d'onduleurs sur plusieurs lignes.
- Veiller à un dégagement adéquat à l'avant pour l'accès au service de l'onduleur.

2.3 Montage de l'onduleur

ATTENTION
Pour manipuler l'onduleur en toute sécurité, faire appel à deux personnes pour porter l'appareil ou utiliser un chariot de transport adapté. Porter des chaussures de sécurité.

Procédure :
2. Sur l’onduleur, placer les vis latérales contre les fentes de la plaque de montage.

4. Vérifier que les 4 vis latérales sont correctement insérées dans les fentes de la plaque de montage.

5. Lâcher l’onduleur.

Protection antivol (en option)
Pour protéger l’onduleur contre le vol, fixer comme suit :

1. Utiliser 2 vis de sécurité, M5 x 8-12 (non fournies).
2. Insérer les vis dans les orifices antivol prépercés (voir l’Illustration 1.3), à travers la plaque de montage dans le mur.
3. Serrer les vis.

2.4 Démontage de l’onduleur
Procédure :

1. Effectuer le retrait dans l’ordre inverse du montage.
4. Soulever l’onduleur pour le retirer de la plaque de montage.

2.5 Accès à la zone d’installation

ATTENTION
Respecter les règles de sécurité concernant les décharges électrostatiques. Décharger toute la charge électrostatique en touchant le boîtier mis à la terre avant de manipuler des composants électroniques.

Procédure :

1. Pour ouvrir le couvercle, desserrer les 2 vis avant inférieures avec un tournevis TX 20. Les vis ne peuvent pas tomber.
2. Soulever le couvercle de 180 degrés. Un aimant maintient le couvercle ouvert.
3. Pour fermer le couvercle, le baisser et serrer les 2 vis avant.
2.6 Raccordement au réseau CA

Sur le câble CA, dénuder l’isolation des 5 fils. Le fil de terre de protection doit être plus long que les fils de neutre et secteur. Voir l’Illustration 2.16.

Illustration 2.15 Zone d’installation

L1, L2, L3	3 fils secteur
N	Fil de neutre
PE1	Terre de protection primaire
PE2	Terre de protection secondaire

1. Vérifier que les caractéristiques nominales de l’onduleur sont adaptées au réseau.
2. Vérifier que le disjoncteur principal est actionné et prendre des précautions pour éviter toute reconnexion.
3. Ouvrir le couvercle avant.
4. Insérer le câble dans le presse-étoupe CA jusqu’aux borniers.

5. Connecter les 3 fils secteur (L1, L2, L3), le fil de neutre (N) et le fil de terre de protection (PE) au bornier avec les repères correspondants.

6. En option : Effectuer un raccordement PE supplémentaire au niveau des points de mise à la terre PE secondaire.

7. Tous les fils électriques doivent être correctement serrés au couple adéquat. Voir l’ 5.6 Torque Specifications.

ATTENTION

Vérifier que tous les câblages sont corrects. Le raccordement d’un fil de phase à la borne neutre risque d’endommager irrémédiablement l’onduleur.

AVIS!

Serrer à fond toutes les vis et les presse-étoupe.

AVIS!

Ce produit peut générer un courant CC supérieur à 6 mA dans le fil PE de mise à la terre externe. Lorsqu’un dispositif de surveillance du courant résiduel (RCD ou RCM) est utilisé à des fins de protection en cas de contact direct ou indirect, seul un RCD ou un RCM de type B est autorisé du côté alimentation de ce produit. Si un RCD est utilisé, celui-ci doit avoir une sensibilité de 300 mA pour éviter tout déclenchement intempestif. Les systèmes IT ne sont pas pris en charge.

AVIS!

Pour des informations sur les fusibles et les RCD, se reporter au chapitre 5 Technical Data.

2.7 Connexions RS-485 ou Ethernet

Avant de raccorder les câbles RS-485 ou Ethernet, consulter les exigences à la section 5.9 RS-485 and Ethernet Connections.

AVIS!

Serrer à fond toutes les vis et les presse-étoupe.

2.8 Options

Pour installer des options, se reporter au guide d’installation de l’option respective.

AVIS!

Serrer à fond toutes les vis et les presse-étoupe.
2.9 Fermeture

1. Fermer le couvercle de la zone d’installation de l’onduleur. Serrer les 2 vis avant.
2. Allumer l’alimentation CA.

2.10 Connexion PV

AVERTISSEMENT

Les modules photovoltaïques génèrent de la tension lorsqu’ils sont exposés à la lumière.
NE PAS relier de PV à la terre !

[Image: Illustration 2.20 Ne pas relier de PV à la terre !]

Illustration 2.20 Ne pas relier de PV à la terre !

Utiliser un voltmètre adapté qui permet de mesurer jusqu’à 1000 V CC.

1. Monter les connecteurs Sunclix (non fournis) sur les câbles PV, conformément à l’*Illustration 2.21*.
2. Vérifier la polarité et la tension maximale des panneaux PV en mesurant la tension de circuit ouvert PV. Voir l’*Illustration 2.21*.

- La tension de circuit ouvert PV ne doit pas dépasser 1000 V CC. L’onduleur est protégé contre la polarité inverse et ne produit aucune puissance tant que la polarité n’est pas correcte. L’inversion de polarité ne risque d’endommager ni l’onduleur, ni les connecteurs.

1. Mesurer la tension CC entre la borne positive du panneau PV et la terre (ou le câble PE vert/jaune).
 - La tension mesurée doit être proche de zéro. Une tension constante et non nulle révèle un problème d’isolation du panneau PV.
2. Détecter et corriger le problème avant de poursuivre.
3. Répéter cette procédure pour tous les panneaux. Une distribution de puissance d’entrée non uniforme sur les entrées PV est autorisée si :
 - Les entrées ne sont pas surchargées individuellement. La charge maximale autorisée par entrée est 8000 W.
 - Le courant de court-circuit maximal des modules PV en STC (conditions de test standard) ne dépasse pas 13,5 A par entrée.

Illustration 2.21 Polarité correcte : montage d’un connecteur Sunclix sur un câble

ATTENTION

Installation PV
Les entrées PV inutilisées ne peuvent pas être court-circuitées.

2. Raccorder les câbles PV à l’aide de connecteurs Sunclix. S’assurer que la polarité est correcte, voir l’Illustration 2.21.
 - Fixer la pièce homologue Sunclix sur le câble PV.
 - Connecter à chaque entrée PV dans la zone de connexion PV en veillant à entendre un clic.

Illustration 2.22 Zone de connexion CC

Illustration 2.23 Connecter à l’entrée PV

2.10.1 Classe de protection pour les modules PV

L’onduleur ne doit être utilisé qu’avec des modules PV de classe de protection II, conformes à la norme CEI 61730, classe d’application A.
La tension nominale des modules doit être supérieure à 480 V (la tension nominale typique des modules est de 1000 V). Ceci n’empêche pas d’utiliser des branches fonctionnant à une tension de service inférieure.
Raccorder uniquement des modules PV à l’onduleur.
Aucune autre source d’énergie n’est autorisée.
3 Configuration initiale et démarrage

3.1 Interface utilisateur

L'interface utilisateur comprend :

- Écran local. Il permet une configuration manuelle de l'onduleur.
- Interface Web. Elle permet d'accéder à plusieurs onduleurs par Ethernet.

Choisir une interface pour configurer et démarrer l'onduleur, par

- Écran

 3.2 Display
 3.2.1 Initial Setup via Display

ou

- Interface Web

 3.3 Web Interface
 3.3.4 Web Interface

Ne pas toucher l'autre interface pendant la configuration et la mise en service.

Pour plus d'informations sur l'accès et les menus, consulter le Guide de l'utilisateur de la gamme FLX.

3.1.1 Modes de fonctionnement

L'onduleur dispose de quatre modes de fonctionnement, indiqués par les voyants. Pour plus d'informations sur les voyants, se reporter au Guide de l'utilisateur de la gamme FLX.

Hors connexion (voyants éteints)
Lorsque le réseau AC n'est pas alimenté pendant plus de 10 minutes, l'onduleur se déconnecte du réseau et s'arrête. Hors connexion - veille est le mode nocturne par défaut. Hors connexion - sommeil est le mode nocturne offrant la consommation d'énergie la plus faible.

- Mode Hors connexion - veille (voyants éteints)
 L'onduleur est déconnecté du réseau. Les interfaces utilisateur et de communication restent alimentées pour assurer la communication.

- Mode Hors connexion - sommeil (voyants éteints)
 L'onduleur est déconnecté du réseau. Les interfaces utilisateur, de communication et d'option sont hors tension.

Connexion en cours (voyant vert clignotant)
L'onduleur démarre lorsque la tension d'entrée PV atteint 250 V. L'onduleur effectue une série de tests internes, dont la détection automatique PV et la mesure de la résistance entre les panneaux PV et la masse. En même temps, il surveille les paramètres du réseau. Lorsque les paramètres du réseau sont dans les spécifications pendant la durée requise (selon le code réseau), l'onduleur commence à alimenter le réseau.

En ligne (voyant vert allumé)
L'onduleur est raccordé au réseau et l'alimente. L'onduleur se déconnecte lorsque :

- il détecte des conditions de réseau anormales (en fonction du code réseau) ou
- un événement interne se produit, ou
- la puissance PV disponible est insuffisante (le réseau n'est pas alimenté pendant 10 minutes).

L'onduleur passe alors en mode Connexion en cours ou Hors connexion.

Sécurité intégrée (voyant rouge clignotant)
Si l'onduleur détecte une erreur dans ses circuits pendant l'auto-test (en mode de connexion) ou en cours de fonctionnement, il bascule en mode Sécurité intégrée et se déconnecte du réseau. L'onduleur reste en mode Sécurité intégrée jusqu'à ce que la puissance PV soit absente pendant au moins 10 minutes ou que l'onduleur s'éteigne complètement (AC + PV).

3.1.2 Niveau de sécurité

Trois niveaux de sécurité prédéfinis filtrent l'accès de l'utilisateur aux menus et options.

Niveaux de sécurité :

- Niveau [0] : accès général. Pas de mot de passe requis.

Dans ce manuel, un [0], [1] ou [2] inséré après l'élément de menu indique le niveau de sécurité minimal requis pour accéder à cette option.
Lorsqu’il est connecté à l’interface Web en tant qu’Admin, l’utilisateur dispose d’un accès avec le niveau de sécurité [0].

- La connexion de service offre un accès direct à un niveau de sécurité spécifique pour la durée de la journée en cours.
- Demander les codes de connexion de service à SMA Solar Technology AG.
- Saisir l’identifiant de connexion à l’écran ou dans la fenêtre d’ouverture de session de l’interface Web.
- Lorsque la tâche de service est terminée, se déconnecter dans [Configuration → Sécurité].
- L’onduleur déconnecte automatiquement l’utilisateur après 10 minutes d’inactivité.

Un niveau de sécurité donné permet d’accéder à toutes les options de menu qui correspondent à ce niveau de sécurité, ainsi qu’aux options qui relèvent des niveaux de sécurité inférieurs.

3.1.3 Préparation pour onduleur maître

La fonctionnalité de mode maître permet de désigner un onduleur comme onduleur maître du réseau d’onduleurs. L’onduleur maître accède aux autres onduleurs du réseau, ce qui permet :

- Une réplication des réglages et des données sur le reste du réseau, facilitant ainsi la mise en service et la gestion des données.
- Un contrôle de la puissance au niveau de l’installation (contrôle de services auxiliaires).
- Une récupération de données sur le réseau, pour l’affichage graphique sur l’interface Web, l’envoi vers un entrepôt de données ou l’export vers un ordinateur.

Avant d’activer le mode maître, il convient de s’assurer que les exigences suivantes sont satisfaites :

- Aucun autre onduleur maître n’est présent sur le réseau.
- Connexion Ethernet de l’onduleur à l’interface RJ-45 de l’onduleur, à l’aide d’un cordon de raccordement (câble réseau cat5e, croisé ou droit). Voir 2.7 RS-485 or Ethernet Connections.

- Option interface capteur installée, avec capteurs installés, lorsque les données de capteur sont nécessaires.
- Emplacement le plus proche du routeur, dans une topologie de réseau en cascade.

Après activation du mode maître, effectuer une analyse du réseau pour vérifier que tous les onduleurs suivants sont connectés à l’onduleur maître. Pour lancer l’analyse, accéder à [Configuration → Détails onduleur → Mode Maître → Réseau].

3.1.4 Configuration PV manuelle

Configurer l’onduleur pour une configuration PV manuelle :

- Via l’écran, niveau de sécurité 1, dans [Configuration → Détails configuration → Configuration PV].
- Via l’interface Web, niveau de sécurité 0, dans [Niveau onduleur : Configuration → Détails de configuration → Configuration PV].

Lorsque l’onduleur est configuré pour une configuration PV manuelle, la détection automatique est annulée.

Pour régler la configuration manuellement à l’écran :

1. Mettre le réseau CA sous tension pour démarrer l’onduleur.
3. Appuyer sur [Back]. Utiliser les flèches pour accéder à [Configuration → Détails de configuration → Configuration PV].
4. Sélectionner le mode de configuration PV manuelle dans : [Configuration → Détails de configuration → Configuration PV → Mode : Manuel].
5.Configurer l’entrée PV pour qu’elle corresponde au câblage dans : [Configuration → Détails de configuration → Configuration PV].

- Entrée PV 1 : individuelle, parallèle ou désactivée
- Entrée PV 2 : individuelle, parallèle ou désactivée
- Entrée PV 3 : individuelle, parallèle ou désactivée
3.2 Écran

AVIS!

L’écran reste activé pendant 10 secondes maximum après la mise sous tension.

L’écran intégré à l’avant de l’onduleur permet à l’utilisateur d’accéder à toutes les informations relatives à l’installation PV et à l’onduleur.

L’écran comporte 2 modes :

1. **Normal** : l’écran fonctionne.
2. **Économie d’énergie** : si l’écran reste inactif pendant plus de 10 minutes, le rétroéclairage se désactive afin d’économiser de l’énergie. Appuyer sur une touche pour réactiver l’affichage.

![Illustration 3.1 Présentation des boutons d’affichage et de leur fonction](image)

Tableau 3.1 Présentation des boutons d’affichage et de leur fonction

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>Revenir en arrière/désélectionner</td>
<td>Voyant allumé/désallumé</td>
</tr>
<tr>
<td>On (LED verte)</td>
<td></td>
<td>Voyant allumé/clignotant = en ligne/connexion en cours</td>
</tr>
<tr>
<td>Alarme (LED rouge)</td>
<td></td>
<td>Voyant clignotant = sécurité intégrée</td>
</tr>
</tbody>
</table>

AVIS:

Le niveau de contraste de l’écran peut être réglé en appuyant sur la flèche vers le haut/vers le bas tout en maintenant le bouton F1 enfoncé.

La structure de menus est divisée en 4 sections principales :

1. **Vue** - présente une courte liste d’informations, en lecture seule.
3. **Journ.** - affiche les données enregistrées.
4. **Conf.** - affiche les paramètres configurables, en lecture/écriture.

Se reporter aux sections suivantes pour plus de détails.

3.2.1 Configuration initiale par l’écran

L’onduleur est fourni avec un ensemble de réglages prédéfinis pour différents réseaux. Toutes les limites spécifiques au réseau sont enregistrées dans l’onduleur et doivent être sélectionnées au moment de l’installation. Il est toujours possible d’afficher les limites appliquées au réseau à l’écran.

Après l’installation, vérifier tous les câbles puis fermer l’onduleur.

Allumer le CA avec l’interrupteur secteur.

L’adresse IP peut être consultée sur l’écran lors de la mise en service.
Sélectionner la langue lorsque l'écran le demande. Cette sélection n’a pas d’influence sur les paramètres de fonctionnement de l’onduleur et il ne s’agit pas d’une sélection de réseau.

Pour activer le mode Maître, accéder au menu Détails onduleur [Configuration → Détails onduleur → Mode Maître] et régler le mode Maître sur Activé.

AVIS!
Pour utiliser la langue définie par défaut (Anglais), il suffit d’appuyer deux fois sur [OK] pour la sélectionner et l’accepter.

Réglage de l'heure
Heure (h:m:s): 00:00:00

AVIS!
Régler la date et l'heure avec précision. L'onduleur utilise ces informations pour la journalisation. Si la date/l'heure sont mal réglées par erreur, il convient de les rectifier immédiatement en passant par le menu de réglage de la date et de l'heure [Configuration → Détails onduleur → Régler date et heure].

Régler la date
Date (h:m:s): 01-01-2008

Illustration 3.5 Réglage de la date

Régler la date dès que l'écran l'indique. Appuyer sur [OK] pour sélectionner. Appuyer sur [▲] pour faire défiler les chiffres. Sélectionner en appuyant sur [OK].

Entrez la puiss. PV inst.

Entrée PV 1: 8000 W
Entrée PV 2: 8000 W
Entrée PV 3: 8000 W
Confirmez la sélection

Illustration 3.6 Puissance PV installée

Entre la quantité de puissance PV installée pour chacune des entrées PV. Lorsque plusieurs entrées PV sont connectées en parallèle, saisir la puissance PV installée moyenne de chaque entrée PV, comme montré dans les exemples.

<table>
<thead>
<tr>
<th>Configuration des branches photovoltaïques</th>
<th>Saisir cette valeur dans Puissance PV installée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemple 1 : PV1, PV2 et PV3 sont toutes réglées sur le mode individuel. Puissance PV nominale installée : PV1 : 6000 W PV2 : 6000 W PV3 : 3 000 W</td>
<td>PV1 : 6000 W PV2 : 6000 W PV3 : 3 000 W</td>
</tr>
<tr>
<td>Exemple 2 : PV1 et PV2 sont réglées en mode parallèle et ont un total de 10 kW de puissance PV installée. PV3 est réglée sur le mode individuel et a une puissance PV nominale de 4 kW.</td>
<td>PV1 : 5000 W PV2 : 5000 W PV3 : 4000 W</td>
</tr>
<tr>
<td>Exemple 3 : PV1 et PV2 sont réglées en mode parallèle et ont un total de 11 kW de puissance PV installée. PV3 est réglée sur [Arrêt] et n'a pas de puissance PV installée.</td>
<td>PV1 : 5500 W PV2 : 5500 W PV3 : 0 W</td>
</tr>
</tbody>
</table>

Tableau 3.2 Exemples de puissance PV installée

L'écran affiche alors Sélection pays. Le réglage est Pays indéf. à la mise en service initiale. Appuyer sur [▼] pour faire défiler la liste des réglages. Pour sélectionner le réglage souhaité, appuyer sur [OK].

 Sélectionner le pays
Pays: Pays non déf.

Illustration 3.7 Sélection du pays
Illustration 3.8 Sélection du code réseau

L'écran affiche alors Sélectionner le code réseau. Le code réseau est réglé sur Réseau indéf. à la mise en service initiale. Pour sélectionner le code réseau, appuyer sur [OK]. Appuyer sur [▼] pour faire défiler la liste. Sélectionner le code réseau de l'installation en appuyant sur [OK]. Il est très important de choisir le code réseau qui convient.

AVERTISSEMENT

La sélection adéquate du code réseau est essentielle pour être en conformité avec les normes locales et nationales.

AVIS!

Si les deux sélections de code réseau ne correspondent pas, elles seront annulées et il conviendra de recommencer cette étape. Si le code réseau spécifié lors de la première sélection est erroné et accidentellement accepté, accepter « Réseau : indéf. » dans l'écran de confirmation du code réseau. Cela permet d'annuler la sélection du code réseau. Une nouvelle sélection est alors possible.

AVIS!

L'accès au niveau de sécurité 2 est accordé pendant 5 heures après la fin de la configuration. Il convient de se déconnecter avant de quitter le site. Si un mauvais code réseau est sélectionné deux fois, il peut être modifié dans les 5 heures qui suivent. L'accès à un niveau supérieur est possible en verrouillant la configuration et en se reconnectant avec un mot de passe valable 24 heures. Seul du personnel agréé est autorisé à configurer l'onduleur. Les modifications seront enregistrées dans un journal et SMA Solar Technology AG n'assume aucune responsabilité pour tout dommage causé suite à une modification de la configuration de l'onduleur.

3.2.2 Activer l'interrupteur PV

Illustration 3.10 Activer l'interrupteur PV

Confirmer en sélectionnant à nouveau le code réseau et appuyer sur [OK]. Les paramètres du code réseau choisi sont désormais activés.

3.2.3 Mise en service

L'onduleur démarre automatiquement si le rayonnement solaire disponible est suffisant. La mise en service prend quelques minutes. Au cours de cette période, l'onduleur procède à un auto-test.
AVIS!

L'onduleur est protégé contre la polarité inverse mais ne produit aucune énergie tant que la polarité n'est pas corrigée.

3.2.4 Procédure de test automatique

Pour certains codes réseau, un test automatique de l'onduleur peut être lancé en activant la procédure correspondante :

- Via l'écran, accéder à [Configuration → Autotest] et appuyer sur [OK].

3.3 Interface Web

Ces instructions décrivent l'interface Web, qui facilite l'accès à distance à l'onduleur.

Se reporter à la rubrique de téléchargement à l'adresse www.SMA.de pour consulter les instructions les plus récentes.

Pour toutes les entrées de texte, le logiciel prend en charge les caractères Unicode.

Pour le nom de l'onduleur, les espaces ne sont pas autorisées.

Pour le nom de l'installation, du groupe et de l'onduleur, seuls les caractères suivants sont pris en charge :

Minuscules	abcdefghijklmnopqrstuvwxyz
Majuscules	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Chiffres	0123456789
Caractères spéciaux	- _ .

3.3.1 Préparation de la configuration

S'assurer que les éléments suivants sont prêts avant de commencer la configuration :

- L'onduleur maître est désigné et préparé, voir la section 3.1.3 Preparation for Master Inverter.
- La connexion Ethernet du PC à l'onduleur est établie, voir aussi la section 2.7 RS-485 or Ethernet Connections.

3.3.2 Configuration initiale par l'interface Web

ATTENTION

Modifier immédiatement l'identifiant de connexion Web Server et le mot de passe de l'onduleur maître pour garantir une sécurité optimale lors de la connexion à Internet. Pour modifier le mot de passe, accéder à [Configuration → Web Server → Admin].

Procédure de configuration

1. S'assurer que l'onduleur maître est désigné et préparé, voir la section 3.1.3 Preparation for Master Inverter.
2. Sur le PC, attendre que Windows signale une connectivité limitée (si aucun DHCP n'est présent). Ouvrir le navigateur Internet et s'assurer que les fenêtres contextuelles ne sont pas bloquées.
3. Saisissez une des options suivantes dans le champ d'adresse :
 - Pour Windows XP et les versions plus anciennes de Windows : http://invertername, où « invertername » (le nom de l'onduleur) correspond aux 10 derniers chiffres du numéro de série.
 - Pour Windows 7 et les versions plus récentes de Windows : http://adresse_IP. L'adresse IP peut être vérifiée sur l'écran.

Il est impossible d'utiliser l'assistant d'installation avec Windows 7 et 8.

Repérer le numéro de série sur l'étiquette du produit, située sur le côté du boîtier de l'onduleur. Voir Illustration 1.2.

1. La fenêtre d'ouverture de session de l'interface Web s'ouvre.
2. Saisir admin dans les champs Utilisateur et Mot de passe et cliquer sur Se connecter.
3. Lors de la première ouverture de session, l'onduleur lance un assistant de configuration.

Étape 1 sur 8 : langue d'affichage

 Sélectionner la langue d'affichage.

- La langue par défaut est l'anglais.
AVIS
Cette sélection définit la langue de l'affichage, mais pas le code réseau.

Assistant de config., étape 1 sur 8
Sélectionner la langue utilisée par l'onduleur

Langue d'affichage: [Français]

Illustration 3.11 Étape 1 sur 8 : langue d'affichage

Pour modifier le paramètre de langue ultérieurement, aller à [Configuration → Détails de configuration].

Étape 2 sur 8 : définition du maître
Pour définir un onduleur maître, cliquer sur Définir comme maître.
• Une analyse est effectuée pour identifier les onduleurs du réseau.
• Une fenêtre contextuelle montre les onduleurs identifiés avec succès.
Cliquer sur [OK] pour confirmer que le nombre exact d'onduleurs a été trouvé.

Assistant de config., étape 2 sur 8
Configurer l'onduleur pour être le maître s'il n'y en a pas sur le réseau

[définir comme maître]
(une analyse du réseau va commencer automatiquement, attendre la fin et vérifier la liste des onduleurs trouvés)

Illustration 3.12 Étape 2 sur 8 : définition du maître

Pour changer ce réglage ultérieurement, aller à [Niveau onduleur : Configuration → Détails onduleur].

Étape 3 sur 8 : heure et date
Saisir :
• l'heure au format 24 heures,
• la date,
La précision est importante car la date et l’heure sont utilisées aux fins de journalisation. Le passage à l’heure d’été est automatique.

Illustration 3.13 Étape 3 sur 8 : heure et date

Pour changer ces réglages ultérieurement, accéder à [Niveau onduleur : Configuration → Régler date et heure].

Étape 4 sur 8 : puissance installée
Pour chaque entrée PV, saisir la puissance PV installée.

Les valeurs de puissance PV installée sont utilisées pour calculer le rapport de performance. Pour plus d’informations, se reporter au Guide de conception de la gamme FLX.
ATTENTION

Un réglage incorrect peut avoir de lourdes conséquences sur l'efficacité de la production.

Assistant de config., étape 4 sur 8

Configurer la quantité de puissance PV installée reçue à chacune des entrées PV des onduleurs.

Puissance strings PV1 5000 W
Puiss. panneau PV2 5000 W
Puiss. panneau PV3 5000 W

Illustration 3.14 Étape 4 sur 8 : puissance installée

Dans l'interface Web, accéder à [Niveau onduleur : Configuration → Calibrage, panneau PV].

Étape 5 sur 8 : pays d'installation
Sélectionner le réglage qui correspond au lieu de l'installation.

ATTENTION
La sélection adéquate est essentielle pour être en conformité avec les normes locales et nationales.

Assistant de config., étape 5 sur 8

Sélectionner le réglage spécifique au pays utilisé par l'onduleur.

Pays: Allemagne

Illustration 3.15 Étape 5 sur 8 : pays d'installation

Étape 6 sur 8 : code réseau
Sélectionner le code réseau qui correspond au lieu d'installation.

- Le réglage par défaut est [non défini].
Choisir de nouveau le code réseau pour confirmer.

- Ce réglage s'active automatiquement.

ATTENTION

La sélection adéquate est essentielle pour être en conformité avec les normes locales et nationales.

Assistant de config. : étape 6 sur 8

Sélectionner le réseau spécifique utilisé par l'onduleur

<table>
<thead>
<tr>
<th>Pays:</th>
<th>Allemagne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réseau:</td>
<td>Moyenne tension</td>
</tr>
<tr>
<td>Réseau:</td>
<td>Moyenne tension (Sélectionner de nouveau le code réseau)</td>
</tr>
</tbody>
</table>

Il est important de saisir le réglage de code réseau approprié.

Description détaillée des codes réseau sélectionnables : [Afficher liste réseau]

Illustration 3.16 Étape 6 sur 8 : code réseau

AVIS!

Si le réglage initial et le réglage de confirmation diffèrent,

- la sélection du code réseau est annulée, et
- l'assistant revient au début de l'étape 5.

Si le réglage initial et le réglage de confirmation correspondent, mais sont incorrects, contacter le service d'assistance.

Étape 7 sur 8 : reproduction des réglages

Cette étape est disponible dans le cas d'un onduleur maître avec des suiveurs connectés. Pour copier les réglages des étapes 1 à 6 vers les autres onduleurs du même réseau :

- Sélectionner les onduleurs.
- Cliquer sur [Reproduire].
AVIS!

Lorsque la configuration PV, la puissance PV installée et la surface des panneaux PV des onduleurs suiveurs du réseau diffèrent de celles de l'onduleur maître, ne pas reproduire les réglages. Configurer individuellement les onduleurs suiveurs.

Assistant de config.: étape 7 sur 8

Répliquer les paramètres de l'onduleur maître sur les onduleurs suiveurs sélectionnés

- Tous Nom
- Slave Configuré
- abc123456 (maître) Configuré

Illustration 3.17 Étape 7 sur 8 : reproduction des réglages

Étape 8 sur 8 : mise en service de l'onduleur

L'assistant affiche un aperçu de la configuration.

Cliquer sur [Terminer] pour démarrer l'onduleur. La mise en service démarre lorsque le rayonnement solaire est suffisant. La séquence de mise en service, auto-test compris, prend quelques minutes.
Assistant de config. : étape 8 sur 8

L'onduleur est maintenant configuré et prêt à l'emploi.

Vue d'ensemble de la configuration :
- Langue : Français
- Pays : Allemagne
- Réseau : Moyenne tension

Heure : 11:00:40
Date : 2012-11-19

Puiss. panneau PV 1 : 6000 W
Puiss. panneau PV 2 : 6000 W
Puiss. panneau PV 3 : 6000 W

Illustration 3.18 Étape 8 sur 8 : mise en service de l'onduleur

Pour changer le réglage ultérieurement, accéder à l'onduleur via l'interface Web ou via l'écran, au niveau de l'onduleur.

- Pour modifier le nom de l'onduleur, aller dans [Niveau onduleur : Configuration → Détails onduleur].
- Pour activer le mode maître, aller dans [Niveau onduleur : Configuration → Détails onduleur].
3.3.4 Interface Web

La présentation de l’interface Web est structurée comme suit.

1. **Nom de l’installation** : affiche le nom actuel de l’installation :
 - Cliquer sur le nom de l’installation pour afficher la vue de l’installation.
 - Modifier le nom de l’installation dans [Configuration → Détails de l’installation].

2. **Menu des groupes** : affiche les groupes d’onduleurs :
 - Les onduleurs sont par défaut inclus dans le groupe 1.
 - Cliquer sur le nom d’un groupe pour afficher la vue du groupe ainsi qu’une liste des onduleurs qui en font partie.
 - Modifier le nom du groupe dans [Configuration → Détails onduleur] dans la vue de l’onduleur.

3. **Membres d’un groupe** : affiche les noms des onduleurs dans le groupe actuellement sélectionné. Le nom de l’onduleur par défaut est tiré du numéro de série.
 - Cliquer sur un nom d’onduleur pour afficher la vue de l’onduleur.
 - Modifier le nom de l’onduleur dans [Configuration → Détails onduleur] dans la vue de l’onduleur.

7. **Pied de page** : options dans la barre du pied de page :
Langue : ouvre une fenêtre contextuelle. Cliquer sur le drapeau du pays pour changer la langue de l'interface Web selon les besoins de la session active.

Contact : ouvre une fenêtre contextuelle qui affiche les informations de contact de SMA Solar Technology AG.

Déconnexion : ouvre la boîte de dialogue d'ouverture/de fermeture de session.

Niveau de sécurité : affiche le niveau de sécurité actuel comme expliqué dans la section Niveaux de sécurité.

AVIS!
Le contenu du menu principal change selon la vue actuellement sélectionnée : l'installation, un groupe d'onduleurs ou un onduleur particulier.

3.3.5 Vues de l'onduleur, du groupe et de l'installation

Les écrans d'aperçu pour la vue de l'installation, la vue du groupe et la vue de l'onduleur affichent les mêmes informations d'état général.

Illustration 3.20 État global de l'installation
Tableau 3.3 Informations affichées dans la vue de l'installation, écran d'aperçu

AVIS!

Pour calculer le rapport de performance RP, un capteur d'ensoleillement est nécessaire, voir [Configuration → Calibrage].

3.3.6 Procédure de test automatique

Pour certains codes réseau, un test automatique de l'onduleur peut être lancé en activant la procédure correspondante :

- Par l'interface Web, accéder à [Niveau onduleur : Configuration → Détails de configuration → Autotest] et cliquer sur [Démarrage → Test].
4 Service

4.1 Dépannage

Ce guide fournit des tableaux indiquant les messages apparaissant à l'écran de l'onduleur, appelés événements. Les tableaux contiennent la description des événements et les actions correctives à entreprendre. Pour la liste complète des événements, se reporter au Guide de l'utilisateur de la gamme FLX.

Pour afficher les événements, aller dans le menu Journ., puis sélectionner l'option Journal d'événement. Le dernier événement enregistré par l'onduleur apparaît alors, de même que la liste des 20 derniers événements. Lorsque l'onduleur passe en mode En ligne, l'événement le plus récent est supprimé et remplacé par 0.

Le code d'événement se compose de deux éléments : le classificateur de groupe et l'ID événement. Le classificateur de groupe a trait au type d'événement, tandis que l'ID événement sert à identifier un événement précis.

Tableau 4.1 donne un aperçu de la structure des événements de l'onduleur et explique comment les utiliser.

<table>
<thead>
<tr>
<th>Type d'événement</th>
<th>ID</th>
<th>Message d'état</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Assistance téléphonique</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Événements relatifs au réseau</td>
<td>1–6</td>
<td>Tension du réseau trop basse.</td>
<td>Appeler l'installateur et lui indiquer la tension de phase du réseau. Vérifier la tension et l'installation CA. Si la tension est égale à zéro, contrôler les fusibles.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7–9</td>
<td>La tension moyenne du réseau sur 10 minutes est trop haute.</td>
<td>Appeler l'installateur et lui indiquer la tension de phase du réseau. Vérifier que l'installation est conforme au guide d'installation. Si tel est le cas, augmenter la limite de tension moyenne selon la section Sécurité fonctionnelle.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–15</td>
<td>Tension du réseau trop élevée.</td>
<td>Appeler l'installateur et lui indiquer la tension de phase du réseau.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16–18</td>
<td>L'onduleur a détecté un pic de tension sur le réseau.</td>
<td>Appeler l'installateur et lui indiquer la tension de phase du réseau. Vérifier la tension et l'installation CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19–24</td>
<td>Fréquence de réseau trop basse ou trop haute.</td>
<td>Appeler l'installateur et lui indiquer la fréquence du réseau.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Événements relatifs au réseau

<table>
<thead>
<tr>
<th>ID</th>
<th>Message d'état</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Assistance téléphonique</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–27</td>
<td>Perte de secteur, tensions phase à phase trop basses.</td>
<td>Appeler l'installateur et l'informer de la tension sur les trois phases. Vérifier la tension phase à phase et l'installation CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28–30</td>
<td>Perte de secteur, taux de changement de fréquence (ROCOF) hors plage.</td>
<td>Si l'événement se produit de nouveau plusieurs fois par jour, contacter le fournisseur d'électricité.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31–33</td>
<td>Courant réseau CC trop élevé.</td>
<td>Si cet événement est rapporté plusieurs fois par jour, contacter l'installateur. Installateur : Effectuer une analyse sur site du réseau.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34–37</td>
<td>Le dispositif de surveillance du courant résiduel (RCMU) a mesuré un courant excessif.</td>
<td>Couper l'alimentation CA et CC, puis attendre que l'écran s'éteigne. Remettre l'alimentation CA et CC, puis observer si l'événement se produit de nouveau. Si c'est le cas, appeler l'installateur. Installateur : inspection visuelle de tous les câbles et modules PV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Réseau CA anormal</td>
<td>Le réseau CA est hors plage pendant plus de 10 minutes (fréquence et/ou tension). Appeler l'installateur et lui indiquer la fréquence, la version logicielle et le réglage du code réseau. Installateur : Vérifier l'installation CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>41–43</td>
<td>L'onduleur a détecté que la tension du réseau était inférieure à un certain niveau.</td>
<td>Si cet événement est rapporté plusieurs fois par jour, contacter l'installateur. Installateur : Effectuer une analyse sur site du réseau.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PLA en dessous du seuil</td>
<td>L'onduleur se déconnecte du réseau si la fonctionnalité PLA est inférieure de 3 % à la puissance nominale. Contacter le fournisseur d'électricité et obtenir l'état de la réduction de puissance active (PLA).</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>48–53</td>
<td>Fréquence de réseau trop basse ou trop haute</td>
<td>Appeler l'installateur et l'informer de la fréquence du réseau. Vérifier l'installation CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54–56</td>
<td>Courant réseau CC trop élevé (étage 2).</td>
<td>Si cet événement est rapporté plusieurs fois par jour, contacter l'installateur. Installateur : Effectuer une analyse sur site du réseau.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Un événement de réseau a été détecté et l'onduleur a été arrêté par le circuit à sécurité redondante.</td>
<td>Un événement de réseau a été détecté et l'onduleur a été arrêté par le circuit à sécurité redondante. Vérifier le journal des événements. Si la plupart des entrées sont de type 246, appeler le département SAV. Sinon, attendre 24 h et refaire une vérification.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.2 Événements relatifs au réseau

Événements relatifs au PV

<table>
<thead>
<tr>
<th>ID</th>
<th>Message d'état</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Assistance téléphonique</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–102</td>
<td>PV négatif</td>
<td>Le courant d'entrée est négatif, polarité incorrecte.</td>
<td>Appeler l'installateur. Installateur : vérifier la polarité. Si elle est correcte, contacter le SAV.</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
</tbody>
</table>
Tableau 4.3 Événements relatifs au PV

Événements internes

<table>
<thead>
<tr>
<th>ID</th>
<th>Message d'état</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Assistance téléphonique</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201–208</td>
<td>La température interne de l'onduleur est trop élevée.</td>
<td>S'assurer que l'onduleur n'est pas couvert et que le conduit d'aération n'est pas bloqué. Si ce n'est pas le cas, appeler l'installateur.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>209, 210</td>
<td>Tension sur le bus CC trop élevée.</td>
<td>Réinitialiser l'onduleur en déconnectant le CC et le CA à l'aide des commutateurs. Si l'événement se répète, appeler l'installateur. Installateur : Vérifier la tension PV maximale à l'écran pour voir si elle est supérieure aux limites.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Vitesse ventilateur trop faible.</td>
<td>Le ventilateur de l'onduleur est-il bloqué ? Oui : nettoyer le ventilateur, non : Appeler l'installateur.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>L'onduleur est incapable d'équilibrer le bus CC.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>213–215</td>
<td>Erreur interne : la tension mesurée avant et après le relais diffère de plus de 20 V.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>216–221</td>
<td>Courant mesuré sur le côté CA trop élevé.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Un fil électrique s’est rompu dans le dispositif de surveillance du courant résiduel.</td>
<td>Appeler l'installateur. Installateur : Si l’auto-test ne se termine pas correctement, appeler le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>225–240</td>
<td>Panne de mémoire/EEPROM</td>
<td>Redémarrer l'onduleur. Si l'événement persiste, appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>241, 242, 249</td>
<td>Erreur de communication interne</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>243, 244</td>
<td>Erreur interne</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Tableau 4.4 Événements internes

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Assistance téléphonique</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>Erreur de plausibilité FSP</td>
<td>Contrôler le journal des événements pour consulter les autres événements de réseau (1-55) et suivre les instructions correspondantes. Si l'événement persiste, appeler l'installateur.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>248, 251</td>
<td>Échec de l'auto-test Sécurité intégrée FSP</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>252-254</td>
<td>Courant mesuré sur le côté CA trop élevé.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>255-257</td>
<td>Déclenchement de la protection de l'ilotage.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>260</td>
<td>La résistance entre la masse et le PV est trop faible pour que l'onduleur puisse démarrer. L'onduleur devra procéder à une nouvelle mesure 10 minutes après.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>261-262</td>
<td>Échec des mesures de courant PV.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Événements provoqués par l'auto-test

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Action</th>
<th>DNO</th>
<th>Assistance téléphonique</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-271</td>
<td>Échec de la mesure du test de circuit.</td>
<td>Redémarrer l'onduleur. Si l'événement persiste, appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>352</td>
<td>L'auto-test du dispositif de surveillance du courant résiduel (RCMU) a échoué.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>353</td>
<td>Le test de courant du capteur a échoué.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>356-363</td>
<td>Le test des transistors et relais a échoué, ou défaillance du relais d'onduleur (contact supposé soude).</td>
<td>Appeler l'installateur. Installateur : Vérifier l'installation CA et contrôler l'absence de pannes sur la connexion du neutre. Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>364</td>
<td>Connexion du neutre endommagée ou manquante.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>365</td>
<td>Fil de terre défectueux.</td>
<td>Appeler l'installateur. Installateur : Contacter le SAV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2 Maintenance

Normalement, l'onduleur ne nécessite ni maintenance, ni étalonnage.

S'assurer que le dissipateur de chaleur à l'arrière de l'onduleur n'est pas couvert.

Nettoyer les contacts de l'interrupteur PV une fois par an. Nettoyer en activant et désactivant l'interrupteur 10 fois. L'interrupteur PV est situé au bas de l'onduleur.

Pour un fonctionnement correct et une longue durée de vie opérationnelle, garantir la circulation d'air autour du dissipateur de chaleur en haut et sur le côté de l'onduleur où l'air s'échappe, et au niveau du ventilateur, à la base de l'onduleur.

Pour ôter les obstructions, nettoyer à l'aide d'air comprimé, d'un chiffon doux ou d'une brosse.

AVERTISSEMENT

La température du dissipateur de chaleur peut dépasser 70 °C.
5 Données techniques

5.1 Spécifications

5.1.1 Spécifications de l’onduleur

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Paramètre</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Puissance apparente nominale</td>
<td>5 kVA</td>
</tr>
<tr>
<td>$P_{ac,r}$</td>
<td>Puissance active nominale$^{1)}$</td>
<td>5 kW</td>
</tr>
<tr>
<td></td>
<td>Puissance active au cos(ϕ) = 0,95</td>
<td>4,75 kW</td>
</tr>
<tr>
<td></td>
<td>Puissance active au cos(ϕ) = 0,90</td>
<td>4,5 kW</td>
</tr>
<tr>
<td></td>
<td>Plage de puissance réactive</td>
<td>0-3,0 kVAr</td>
</tr>
<tr>
<td>$V_{ac,r}$</td>
<td>Tension CA nominale (plage de tension CA)</td>
<td>3P+N+PE - 230/400 V (+/- 20 %)</td>
</tr>
<tr>
<td></td>
<td>Courant CA nominal</td>
<td>3 x 7,2 A</td>
</tr>
<tr>
<td>$I_{ac,max}$</td>
<td>Courant CA max.</td>
<td>3 x 7,5 A</td>
</tr>
<tr>
<td></td>
<td>Distorsion du courant CA (THD à puissance de sortie nominale, %)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Courant d'appel</td>
<td>9,5 A/10 ms</td>
</tr>
<tr>
<td>$\cos\phi_{ac,r}$</td>
<td>Facteur de puissance à 100 % de charge</td>
<td>>0,99</td>
</tr>
<tr>
<td></td>
<td>Plage du facteur de puissance contrôlé</td>
<td>0,8 surexcité</td>
</tr>
<tr>
<td></td>
<td>Consommation en veille</td>
<td>2,7 W</td>
</tr>
<tr>
<td>f_r</td>
<td>Fréquence nominale du réseau (plage)</td>
<td>50 (±5 Hz)</td>
</tr>
<tr>
<td>CC</td>
<td>Puissance d'entrée PV maximale par MPPT</td>
<td>5,2 kW</td>
</tr>
<tr>
<td></td>
<td>Puissance nominale CC</td>
<td>5,2 kW</td>
</tr>
<tr>
<td>$V_{dc,r}$</td>
<td>Tension nominale CC</td>
<td>715 V</td>
</tr>
<tr>
<td>$V_{dc,min}$</td>
<td>Tension MPP - poursuite active$^{2)}$</td>
<td>220/250-800 V</td>
</tr>
<tr>
<td>$V_{mpp,min}$</td>
<td>Tension MPP - poursuite active $^{2)}$ /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>puissance nominale$^{3)}$</td>
<td></td>
</tr>
<tr>
<td>η_{MPP}</td>
<td>Rendement MPP, statique</td>
<td>99,9 %</td>
</tr>
</tbody>
</table>
Données techniques

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Gamme FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendement MPPT, dynamique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99,7 %</td>
</tr>
<tr>
<td>V_{dc,max}</td>
<td>Tension CC max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{dc,start}</td>
<td>Tension de démarrage CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{dc,min}</td>
<td>Tension d'arrêt CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{dc,max}</td>
<td>Courant MPP max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courant max. de court-circuit CC (en STC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puissance min. en ligne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement max.</td>
<td>97.9%</td>
<td>97.9%</td>
<td>97.9%</td>
<td>97.9%</td>
<td>97.9%</td>
<td></td>
</tr>
<tr>
<td>Rendement Euro, V à V_{dc}</td>
<td>96.1%</td>
<td>96.4%</td>
<td>96.4%</td>
<td>97.1%</td>
<td>97.2%</td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H, L, P), onduleur/emballage compris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>667 x 500 x 233 mm/774 x 570 x 356 mm</td>
</tr>
<tr>
<td>Recommandation d'installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plaque de montage</td>
</tr>
<tr>
<td>Poids, onduleur/emballage compris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38 kg/44 kg</td>
</tr>
<tr>
<td>Niveau de bruit acoustique<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPP Trackers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Plage de température de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-25..60 °C</td>
</tr>
<tr>
<td>Plage de température nom.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-25.45 °C</td>
</tr>
<tr>
<td>Température de stockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-25.60 °C</td>
</tr>
<tr>
<td>Fonctionnement en surcharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Changement du point de fonctionnement</td>
</tr>
<tr>
<td>Catégories de surtensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Réseau : OVC III PV : OVC II</td>
</tr>
</tbody>
</table>

Tableau 5.1 Spécifications

1. À la tension nominale du réseau (V_{ac}), Cos(\phi)=1.
2. Pour exploiter toute la plage, il convient de prendre en compte les dispositions asymétriques, notamment la tension de démarrage pour au moins 1 branche. L’obtention de la puissance nominale dépend de la configuration.
3. Avec configuration d’entrées symétriques.
4. SPL (Niveau de pression acoustique) à 1 m dans des conditions de fonctionnement normal. Mesuré à 25 °C.
Données techniques

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Paramètre</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td></td>
<td>10 12.5 15 17</td>
</tr>
<tr>
<td>[S]</td>
<td>Puissance apparente nominale</td>
<td>10 kVA 12,5 kVA 15 kVA 17 kVA</td>
</tr>
<tr>
<td>Pac,r</td>
<td>Puissance active nominale</td>
<td>10 kW 12,5 kW 15 kW 17 kW</td>
</tr>
<tr>
<td></td>
<td>Puissance active au cos(phi) = 0,95</td>
<td>9,5 kW 11,9 kW 14,3 kW 16,2 kW</td>
</tr>
<tr>
<td></td>
<td>Puissance active au cos(phi) = 0,90</td>
<td>9,0 kW 11, 3 kW 13,5 kW 15,3 kW</td>
</tr>
<tr>
<td></td>
<td>Plage de puissance réactive</td>
<td>0-6,0 kVAR 0-7,5 kVAR 0-9,0 kVAR 0-10,2 kVAR</td>
</tr>
<tr>
<td>Vac,r</td>
<td>Tension CA nominale (plage de tension CA)</td>
<td>3P+N+PE - 230/400 V (+/- 20 %)</td>
</tr>
<tr>
<td></td>
<td>Courant CA nominal</td>
<td>3 x 14,5 A 3 x 18,2 A 3 x 21,7 A 3 x 24,7 A</td>
</tr>
<tr>
<td>Iac,max</td>
<td>Courant CA max.</td>
<td>3 x 15,1 A 3 x 18,8 A 3 x 22,6 A 3 x 25,6 A</td>
</tr>
<tr>
<td></td>
<td>Distorsion du courant CA (THD à puissance de sortie nominale, %)</td>
<td>- <2 %</td>
</tr>
<tr>
<td></td>
<td>Courant d'appel</td>
<td>0,5 A/10 ms</td>
</tr>
<tr>
<td>cosphiac,r</td>
<td>Facteur de puissance à 100 % de charge</td>
<td>>0,99</td>
</tr>
<tr>
<td></td>
<td>Plage du facteur de puissance contrôlé</td>
<td>0,8 surexcité 0,8 sous-excité</td>
</tr>
<tr>
<td></td>
<td>Consommation en veille</td>
<td>2,7 W</td>
</tr>
<tr>
<td>f_r</td>
<td>Fréquence nominale du réseau (plage)</td>
<td>50 (±5 Hz)</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puissance d'entrée PV maximale par MPPT</td>
<td>8 kW</td>
</tr>
<tr>
<td></td>
<td>Puissance nominale CC</td>
<td>10,4 kW 12,9 kW 15,5 kW 17,6 kW</td>
</tr>
<tr>
<td>Vdc,r</td>
<td>Tension nominale CC</td>
<td>715 V</td>
</tr>
<tr>
<td>Vdc min/ Vdc max</td>
<td>Tension MPP - poursuite active) / puissance nominale (3)</td>
<td>220/430-800 V 220/360-800 V 220/430-800 V 220/485-800 V</td>
</tr>
<tr>
<td></td>
<td>Rendement MPP, statique</td>
<td>99,9 %</td>
</tr>
<tr>
<td></td>
<td>Rendement MPPT, dynamique</td>
<td>99,7 %</td>
</tr>
<tr>
<td>Vdc,max</td>
<td>Tension CC max.</td>
<td>1 000 V</td>
</tr>
<tr>
<td>Vdc,start</td>
<td>Tension de démarrage CC</td>
<td>250 V</td>
</tr>
<tr>
<td>Vdc,arrêt</td>
<td>Tension d'arrêt CC</td>
<td>220 V</td>
</tr>
<tr>
<td>Idc,max</td>
<td>Courant MPP max.</td>
<td>12 A par entrée PV</td>
</tr>
</tbody>
</table>
Données techniques

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Paramètre</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Courant max. de court-circuit CC (en STC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puissance min. en ligne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement max.</td>
<td></td>
<td>97.9%</td>
</tr>
<tr>
<td>Rendement Euro, V à dc,r</td>
<td></td>
<td>97.2%</td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H, L, P), onduleur/emballage compris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommandation d'installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poids, onduleur/emballage compris</td>
<td></td>
<td>38 kg/44 kg</td>
</tr>
<tr>
<td>Niveau de bruit acoustique⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPP Trackers</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Plage de température de fonctionnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage de température nom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Température de stockage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonctionnement en surcharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégories de surtensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.2 Spécifications

¹ À la tension nominale du réseau (Vac,r), Cos(ϕ)=1.
² Pour exploiter toute la plage, il convient de prendre en compte les dispositions asymétriques, notamment la tension de démarrage pour au moins une branche. L’obtention de la puissance nominale dépend de la configuration.
³ Avec configuration d’entrées symétriques.
⁴ SPL (Niveau de pression acoustique) à 1 m dans des conditions de fonctionnement normal. Mesuré à 25 °C.
Données techniques

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de connecteur</td>
<td>Sunclix</td>
</tr>
<tr>
<td>Mode parallèle</td>
<td>Oui</td>
</tr>
<tr>
<td>Interface</td>
<td>Ethernet (interface Web), RS-485</td>
</tr>
<tr>
<td>Options</td>
<td>Kit d'option GSM, Option interface capteur, Option PLA</td>
</tr>
<tr>
<td>Balayage PV</td>
<td>Oui</td>
</tr>
<tr>
<td>Fonctionnement en surcharge</td>
<td>Changement du point de fonctionnement</td>
</tr>
<tr>
<td>Fonctionnalité de réseau</td>
<td>Alimentation sans panne</td>
</tr>
<tr>
<td>Contrôle de puissance active(^{1})</td>
<td>Intégré, ou via un dispositif externe</td>
</tr>
<tr>
<td>Contrôle de puissance réactive(^{1})</td>
<td>Oui</td>
</tr>
<tr>
<td>Protection contre les courts-circuits DC</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Tableau 5.3 Fonctions et fonctionnalités de l'onduleur

\(^{1}\) Commande à distance via un dispositif externe.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Électrique</td>
<td></td>
</tr>
<tr>
<td>Sécurité (classe de protection)</td>
<td>Classe I (mise à la terre)</td>
</tr>
<tr>
<td>PELV : classe de protection de la carte de communication et de la carte de contrôle</td>
<td>Classe II</td>
</tr>
<tr>
<td>Catégories de surtensions</td>
<td>Réseau : OVC III, PV : OVC II</td>
</tr>
<tr>
<td>Fonctionnel</td>
<td></td>
</tr>
</tbody>
</table>
| Détection d’îlotage ENS - perte de secteur | - Déconnexion
- Surveillance triphasée
- ROCOF |
| Amplitude de la tension | Déconnexion, incluse |
| Fréquence | Déconnexion, incluse |
| Part DC du courant AC | Déconnexion, incluse |
| Résistance d’isolation | Connexion évitée, incluse |
| Dispositif de surveillance du courant résiduel (RCMU) - type B | Déconnexion, incluse |

Tableau 5.4 Spécifications de sécurité

(Limite = valeur nominale + tolérance).

<table>
<thead>
<tr>
<th></th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant réseau, par phase</td>
<td>5 6 7 8 9 10 12.5 15 17</td>
</tr>
<tr>
<td>5</td>
<td>7.5 A</td>
</tr>
<tr>
<td>Puissance réseau, totale</td>
<td>5 150 W 6 180 W 7 210 W 8 240 W 9 270 W 10 300 W 12 875 W 15 450 W 17 510 W</td>
</tr>
</tbody>
</table>

Tableau 5.5 Limites de réduction

<table>
<thead>
<tr>
<th>Normes internationales</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive basse tension (DBT)</td>
<td>2006/95/EC</td>
</tr>
</tbody>
</table>

5.2 Limites de réduction

Pour s’assurer que les onduleurs peuvent produire la puissance nominale, les imprécisions de mesure sont prises en compte lors de l’application des limites de l’onduleur dans le Tableau 5.5.
Données techniques

Tableau 5.6 Conformité aux normes internationales

<table>
<thead>
<tr>
<th>Gamme FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive CEM</td>
<td>2004/108/EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consignes de sécurité</td>
<td>CEI 62109-1/CEI 62109-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupteur PV intégré</td>
<td>VDE 0100-712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sécurité fonctionnelle</td>
<td>CEI 62109-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunité CEM</td>
<td>EN 61000-6-1</td>
<td>EN 61000-6-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission CEM</td>
<td>EN 61000-6-3</td>
<td>EN 61000-6-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interférence de raccordement au réseau</td>
<td>EN 61000-3-2/-3</td>
<td>EN 61000-3-11/-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Oui</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caractéristiques de raccordement au réseau</td>
<td>CEI 61727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compteur électrique C0</td>
<td>Oui</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.7 Conditions d'installation

5.4 Conditions d'installation

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Spécification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température</td>
<td>−25 °C - +60 °C (pour les réductions de caractéristiques en fonction de la température, voir le Guide de conception de la gamme FLX.)</td>
</tr>
<tr>
<td>Humidité relative</td>
<td>95 % (sans condensation)</td>
</tr>
<tr>
<td>Degré de pollution</td>
<td>PD2</td>
</tr>
<tr>
<td>Classe environnementale selon CEI</td>
<td>IEC60721-3-3 3K6/3B3/3S3/3M2</td>
</tr>
<tr>
<td>Qualité de l’air - Général</td>
<td>ISA S71.04-1985 Niveau G2 (à 75 % d’humidité relative)</td>
</tr>
<tr>
<td>Qualité de l’air - Zones côtières, industrielles lourdes et agricoles</td>
<td>Mesure obligatoire et classement selon ISA S71.04-1985</td>
</tr>
<tr>
<td>Vibration</td>
<td>1G</td>
</tr>
<tr>
<td>Respecter la classe de protection étanchéité du produit</td>
<td>IP65</td>
</tr>
<tr>
<td>Altitude de fonctionnement max.</td>
<td>2 000 m au-dessus du niveau de la mer. La protection PELV est efficace uniquement jusqu’à 2 000 m au-dessus du niveau de la mer.</td>
</tr>
</tbody>
</table>

Tableau 5.7 Conditions d'installation
5.4.1 Exigences UTE en France

AVIS!
En France, observer les exigences UTE C 15-712-1 et NF C 15–100 exigences.

5.5 Spécifications des câbles

AVIS!
Éviter toute perte de puissance supérieure à 1 % du courant nominal de l’onduleur dans les câbles en suivant les valeurs indiquées dans les tableaux et illustrations.

AVIS!
Le tableau ne présente que des longueurs de câble inférieures à 100 m.

Tableau 5.9 Spécifications des câbles AC

<table>
<thead>
<tr>
<th>Spécification</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longueur maximale de câble AC (m)</td>
<td>5 6 7 8 9 10 12,5 15 17</td>
</tr>
<tr>
<td>2,5 mm²</td>
<td>43 m 36 m 31 m 27 m 24 m 21 m</td>
</tr>
<tr>
<td>4 mm²</td>
<td>69 m 57 m 49 m 43 m 38 m 34 m 27 m</td>
</tr>
<tr>
<td>6 mm²</td>
<td>86 m 74 m 64 m 57 m 52 m 41 m 34 m 30 m</td>
</tr>
<tr>
<td>10 mm²</td>
<td>95 m 86 m 69 m 57 m 51 m</td>
</tr>
<tr>
<td>16 mm²</td>
<td>92 m 81 m</td>
</tr>
<tr>
<td>Type de câble AC</td>
<td>Câble de cuivre à 5 fils</td>
</tr>
<tr>
<td>Diamètre extérieur de câble AC</td>
<td>18-25 mm</td>
</tr>
<tr>
<td>Dénudage de l’isolation des câbles AC</td>
<td>Dénuder 16 mm de l’isolation des 5 fils</td>
</tr>
<tr>
<td>Diamètre du câble PE</td>
<td>Supérieur ou égal au diamètre des câbles de phase AC</td>
</tr>
</tbody>
</table>

1) L’utilisation de câbles d’un diamètre inférieur à 4 mm² est déconseillée.
2) L’utilisation de câbles d’un diamètre inférieur à 6 mm² est déconseillée.

Tableau 5.10 Spécifications des câbles DC

<table>
<thead>
<tr>
<th>Spécification</th>
<th>Gamme FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de câble DC</td>
<td>Min. 1 000 V, 13,5 A</td>
</tr>
<tr>
<td>Longueur de câble DC</td>
<td>Taille de câble DC 4 mm² - 4,8 Ω/km</td>
</tr>
<tr>
<td></td>
<td>Taille de câble DC 6 mm² - 3,4 Ω/km</td>
</tr>
<tr>
<td>Connecteur homologue</td>
<td>Sunclix PV-CM-S 2,5-6(+)/PV-CM-S 2,5-6(-)</td>
</tr>
</tbody>
</table>

* Distance aller/retour entre l’onduleur et le panneau PV, plus la longueur cumulée des câbles utilisés pour l’installation du panneau PV.

Tenir compte également des éléments suivants pour sélectionner le type et la section du câble :

- Température ambiante
- Type d’implantation (dans un local, en sous-sol, à l’air libre, etc.)
- Résistance UV
Données techniques

Illustration 5.2 Gamme FLX 5, Pertes de câble [%] par rapport à la longueur de câble [m]

Illustration 5.3 Gamme FLX 6, Pertes de câble [%] par rapport à la longueur de câble [m]

Illustration 5.4 Gamme FLX 7, Pertes de câble [%] par rapport à la longueur de câble [m]

Illustration 5.5 Gamme FLX 8, Pertes de câble [%] par rapport à la longueur de câble [m]

Illustration 5.6 Gamme FLX 9, Pertes de câble [%] par rapport à la longueur de câble [m]

Illustration 5.7 Gamme FLX 10, Pertes de câble [%] par rapport à la longueur de câble [m]
5.6 Spécifications de couple

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Outil</th>
<th>Couple de serrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Corps de presse-étoupe M16</td>
<td>Clé 19 mm</td>
<td>3,75 Nm</td>
</tr>
<tr>
<td></td>
<td>Presse-étoupe M16, écrou de compression</td>
<td>Clé 19 mm</td>
</tr>
<tr>
<td>2 Corps de presse-étoupe M25</td>
<td>Clé 27 mm</td>
<td>7,5 Nm</td>
</tr>
<tr>
<td></td>
<td>Presse-étoupe M25, écrou de compression</td>
<td>Clé 27 mm</td>
</tr>
<tr>
<td>3 Vis avant</td>
<td>Torx TX 20</td>
<td>1,5 Nm</td>
</tr>
</tbody>
</table>

Tableau 5.11 Spécifications Nm 1
5.7 Spécifications du secteur

<table>
<thead>
<tr>
<th>Gamme FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant maximal de l'onduleur, $I_{ac_{\text{max}}}$</td>
<td>7,5 A</td>
<td>9 A</td>
<td>10,6 A</td>
<td>12,1 A</td>
<td>13,6 A</td>
<td>15,1 A</td>
<td>18,8 A</td>
<td>22,6 A</td>
<td>25,6 A</td>
</tr>
<tr>
<td>Type de fusible recommandé gL/gG^*</td>
<td>10 A</td>
<td>13 A</td>
<td>13 A</td>
<td>13 A</td>
<td>16 A</td>
<td>16 A</td>
<td>20 A</td>
<td>25 A</td>
<td>32 A</td>
</tr>
<tr>
<td>Fusible automatique recommandé de type B ou C*</td>
<td>16 A</td>
<td>16 A</td>
<td>16 A</td>
<td>20 A</td>
<td>20 A</td>
<td>20 A</td>
<td>25 A</td>
<td>25 A</td>
<td>32 A</td>
</tr>
</tbody>
</table>

Tableau 5.13 Spécifications du secteur

* Toujours choisir les fusibles conformément aux réglementations nationales.

5.8 Spécifications de l'interface auxiliaire

<table>
<thead>
<tr>
<th>Interface</th>
<th>Paramètre</th>
<th>Détails du paramètre</th>
<th>Spécification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 et Ethernet</td>
<td>Câble</td>
<td>Diamètre de la gaine du câble (⌀)</td>
<td>2 x 5-7 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type de câble</td>
<td>Paire torsadée blindée (STP Cat 5e ou SFTP Cat 5e)2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impédance caractéristique du câble</td>
<td>100 Ω – 120 Ω</td>
</tr>
<tr>
<td>Connecteurs RJ-45 :</td>
<td></td>
<td>Épaisseur du fil</td>
<td>24-26 AWG (en fonction de la fiche d'accouplement RJ-45 métallique)</td>
</tr>
<tr>
<td>2 RJ-45 pour RS-485</td>
<td></td>
<td>Termination du blindage du câble</td>
<td>Via fiche RJ-45 métallique</td>
</tr>
<tr>
<td>2 RJ-45 pour Ethernet</td>
<td></td>
<td>Isolation d'interface galvanique</td>
<td>Oui, 500 Vrms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection du contact direct</td>
<td>Isolation double/renforcée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre les courts-circuits</td>
<td>Oui</td>
</tr>
<tr>
<td>RS-485 uniquement</td>
<td>Câble</td>
<td>Longueur maximale de câble</td>
<td>1000 m</td>
</tr>
<tr>
<td></td>
<td>Nombre max. de nœuds d'onduleur</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Ethernet uniquement</td>
<td>Communication</td>
<td>Topologie du réseau</td>
<td>En étoile et en cascade</td>
</tr>
<tr>
<td></td>
<td>Câble</td>
<td>Longueur de câble max. entre les onduleurs</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Nombre max. d'onduleurs</td>
<td></td>
<td>1001</td>
</tr>
</tbody>
</table>

Tableau 5.14 Spécifications de l'interface auxiliaire
1) Le nombre max. d'onduleurs est 100. Si un modem GSM est utilisé pour l'envoi vers un portail, le nombre d'onduleurs dans un réseau est limité à 50.

2) Pour un usage extérieur, un câble enterrable d'extérieur (s'il est enterré dans la terre) est recommandé pour Ethernet et RS-485.

5.9 Connexions RS-485 et Ethernet

RS-485

Terminer le bus de communication RS-485 aux deux extrémités.

- La terminaison est automatique si aucune fiche RJ-45 n'est insérée dans la prise. L'absence de connecteur homologue permet à la fois la terminaison et la polarisation.
- Dans de rares cas, la polarisation n'est pas souhaitée, mais la terminaison est nécessaire. Pour terminer le bus RS-485, monter une résistance de terminaison de 100 Ω sur un connecteur montable RJ-45. Insérer ensuite le connecteur (avec la résistance) dans le connecteur RJ-45 non utilisé.

L'adresse RS-485 de l'onduleur est unique et réglée en usine.

En gras = obligatoire, câble Cat5 contenant l'ensemble des 8 fils électriques.
Pour Ethernet : croisement automatique 10Base-TX et 100Base-TX.
5.9.1 Topologie du réseau

L’onduleur a deux connecteurs RJ-45 Ethernet pour permettre le raccordement de plusieurs onduleurs dans une topologie en ligne au lieu d’une topologie en étoile typique. Les deux ports sont similaires et peuvent être utilisés de façon interchangeable. Pour le RS-485, seules des connexions linéaires en cascade peuvent être utilisées.

AVIS!
Une topologie en anneau n’est pas autorisée.

AVIS!
Les deux types de réseau ne peuvent pas être mélangés. Les onduleurs peuvent uniquement être raccordés sur des réseaux qui sont soit RS-485, soit Ethernet.

<table>
<thead>
<tr>
<th>Brochage Ethernet</th>
<th>Couleur standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 5 T-568A</td>
<td>Cat 5 T-568B</td>
</tr>
<tr>
<td>1. RX+ Vert/blanc</td>
<td>Orange/blanc</td>
</tr>
<tr>
<td>2. RX Vert</td>
<td>Orange</td>
</tr>
<tr>
<td>3. TX+ Orange/blanc</td>
<td>Vert/blanc</td>
</tr>
<tr>
<td>4. Bleu</td>
<td>Bleu</td>
</tr>
<tr>
<td>5. Bleu/blanc</td>
<td>Bleu/blanc</td>
</tr>
<tr>
<td>6. TX- Orange</td>
<td>Vert</td>
</tr>
<tr>
<td>7. Marron/blanc</td>
<td>Marron/blanc</td>
</tr>
<tr>
<td>8. Marron</td>
<td>Marron</td>
</tr>
</tbody>
</table>

Ilustration 5.15 Détail du brochage RJ-45 pour Ethernet

Illustration 5.16 Topologie du réseau
Seguridad y Conformidad

Tipos de mensajes de seguridad
En este documento, se utilizan los símbolos descritos a continuación:

⚠️ PELIGRO
Indica una situación potencialmente peligrosa que podría causar la muerte.

⚠️ ADVERTENCIA
Indica una situación potencialmente peligrosa que podría provocar lesiones graves o la muerte.

⚠️ PRECAUCIÓN
Indica una situación potencialmente peligrosa que podría provocar lesiones leves o moderadas. También se utiliza para alertar contra aquellas prácticas que puedan resultar inseguras.

⚠️ AVISO!
Indica información importante, incluidas aquellas situaciones que podrían provocar daños a propiedades o equipos.

Seguridad general
Todas las personas que efectúen tareas de instalación y mantenimiento de inversores deberán:

- tener experiencia y formación sobre las normas generales de seguridad para trabajar con equipos eléctricos;
- estar familiarizadas con los requisitos, reglamentos y normas para la instalación.

⚠️ AVISO!
Antes de la instalación
Compruebe que no se hayan producido daños en el equipo ni en el embalaje. En caso de duda, póngase en contacto con el proveedor antes de comenzar la instalación.

⚠️ PRECAUCIÓN
Instalación
Para conseguir unas condiciones de seguridad óptimas, siga los pasos que se describen en este manual. Recuerde que el inversor tiene dos lados con tensión; la entrada FV y la red de CA.

⚠️ ADVERTENCIA
Desconexión del inversor
Antes de comenzar a trabajar con el inversor, desconecte la CA en el interruptor de red eléctrica y el interruptor FV pulsando el interruptor de carga FV. Asegúrese de que no se puede volver a conectar el dispositivo de manera involuntaria. Utilicé un voltímetro para asegurarse de que la unidad está desconectada y sin tensión. Aunque esté desconectado de la red de CA y los módulos solares, el inversor puede estar cargado con una tensión alta a niveles peligrosos. Espere al menos 8 minutos tras la desconexión de la red y los paneles FV antes de proceder.

Para desconectar de manera segura la corriente continua (CC), apague el interruptor de carga FV (1).
PRECAUCIÓN
Mantenimiento y modificación
Solo se permite efectuar modificaciones en el inversor al personal autorizado para ello. Para garantizar la seguridad del usuario, utilice únicamente recambios originales suministrados por el proveedor. Si se utilizan recambios que no sean originales, no habrá ninguna garantía de que se cumplan las directrices CE de seguridad eléctrica, compatibilidad electromagnética (CEM) y seguridad de la máquina.
La temperatura de las rejillas de refrigeración y de los componentes internos del inversor puede superar los 70 °C. Tenga en cuenta el peligro de lesiones por quemaduras.

El sistema FV presenta tensiones de CC de hasta 1000 V, incluso cuando la red de CA está desconectada. Las averías o el uso inadecuado pueden provocar un arco eléctrico.

ADVERTENCIA
Los módulos FV producen tensión cuando se exponen a la luz.

ADVERTENCIA
No realice trabajos en el inversor mientras desconecte la corriente de CC y CA.

La corriente de cortocircuito de los paneles fotovoltaicos solo es un poco más elevada que la corriente de funcionamiento máxima y depende del nivel de irradiación solar.

Conformidad
Para obtener más información, vaya a la zona de descarga en www.SMA.de, Homologaciones y certificados.
Consulte también 5 Technical Data.

Marcado CE: este símbolo certifica la conformidad del equipo con los requisitos de las directivas CE aplicables.
Índice

1 Introducción 153
 1.1 Objetivo de este manual 153
 1.2 Versión de software 153
 1.3 Recambios 154
 1.4 Desembalaje 154
 1.5 Identificación del inversor 154
 1.6 Secuencia de instalación 154
 1.7 Devolución y eliminación 155
 1.7.1 Devolución 155
 1.7.2 Eliminación 155
 1.8 Información general sobre el área de instalación 156

2 Instalación 157
 2.1 Entorno y espacios 157
 2.2 Montaje de la placa de montaje 158
 2.3 Montaje del inversor 159
 2.4 Desmontaje del inversor 160
 2.5 Acceso al área de instalación 160
 2.6 Conexión de red de CA 161
 2.7 Conexiones Ethernet o RS-485 162
 2.8 Opciones 162
 2.9 Cierre 163
 2.10 Conexión FV 163
 2.10.1 Valor nominal 164

3 Configuración inicial y arranque 165
 3.1 Interfaz de usuario 165
 3.1.1 Modos de funcionamiento 165
 3.1.2 Nivel de seguridad 165
 3.1.3 Preparación del inversor maestro 166
 3.1.4 Configuración FV manual 166
 3.2 Pantalla 166
 3.2.1 Configuración inicial mediante el display 167
 3.2.2 Encienda el interruptor de carga FV 170
 3.2.3 Arranque 170
 3.2.4 Procedimiento de verificación automática 170
 3.3 Interfaz web 170
 3.3.1 Preparación para la configuración 171
 3.3.3 Asistente de configuración 171
 3.3.4 Interfaz web 178
<table>
<thead>
<tr>
<th>3.3.5 Vistas de planta, grupo e inversor</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.6 Procedimiento de verificación automática</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Mantenimiento</th>
<th>181</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Resolución de problemas</td>
<td>181</td>
</tr>
<tr>
<td>4.2 Mantenimiento</td>
<td>185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Datos técnicos</th>
<th>186</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Especificaciones</td>
<td>186</td>
</tr>
<tr>
<td>5.1.1 Especificaciones del inversor</td>
<td>186</td>
</tr>
<tr>
<td>5.2 Límites de reducción de potencia</td>
<td>190</td>
</tr>
<tr>
<td>5.3 Conformidad</td>
<td>190</td>
</tr>
<tr>
<td>5.4 Condiciones de la instalación</td>
<td>191</td>
</tr>
<tr>
<td>5.5 Especificaciones de los cables</td>
<td>192</td>
</tr>
<tr>
<td>5.6 Especificaciones del par</td>
<td>194</td>
</tr>
<tr>
<td>5.7 Especificaciones del circuito de la red eléctrica</td>
<td>195</td>
</tr>
<tr>
<td>5.8 Especificaciones de la interfaz auxiliar</td>
<td>196</td>
</tr>
<tr>
<td>5.9 Conexiones RS-485 y Ethernet</td>
<td>196</td>
</tr>
</tbody>
</table>
1 Introducción

1.1 Objetivo de este manual

La Guía de instalación proporciona la información necesaria para instalar y poner en marcha el inversor de la serie FLX.

Recursos adicionales disponibles:

- Guía del usuario, para obtener información necesaria sobre la monitorización y la configuración del inversor a través del display o la interfaz web.
- Guía de diseño, para obtener información necesaria sobre el uso previsto del inversor en distintas aplicaciones de energía solar.
- Guía de instalación de la opción Sensor Interface, para la instalación y puesta en marcha de la opción Sensor Interface.
- Guía de instalación del Kit opcional GSM, para obtener información necesaria sobre la instalación de la opción GSM y la configuración de la carga de datos o mensajes del inversor.
- Guía de opciones PLA, para obtener información necesaria para instalar y configurar la opción PLA para conectar un receptor de control de ondulación al inversor.
- Instrucciones de instalación del ventilador, para obtener información necesaria sobre la sustitución de un ventilador.

Estos documentos están disponibles en la zona de descarga en www.SMA.de, o a través del proveedor del inversor solar.

La serie de inversores FLX incluye:

- Carcasa IP65
- Seccionador de corte en carga FV
- Conectores Sunclix para las entradas FV
- Acceso manual a la configuración y monitorización del inversor mediante el display
- Funcionalidades auxiliares. Para obtener más detalles, consulte la Guía de diseño de la serie FLX
- Acceso a la configuración y monitorización del inversor a través de la interfaz web

1.2 Versión de software

Este manual de referencia es válido para los inversores con versión de software 2.05 y superiores. Para conocer la versión de software, en el display o la interfaz web (nivel del inversor), consulte [Estado → Inversor → N.º de serie y versión de software → Inversor].
AVISO!
La versión de software al publicar el manual es 2.05.
Puede obtener información sobre la versión de software actual en www.SMA.de.

1.3 Recambios
Póngase en contacto con SMA Solar Technology AG para obtener información sobre recambios, referencias y pedidos.

1.4 Desembalaje
Índice:
- Inversor
- Placa de montaje
- Bolsa de accesorios, que incluye: 3 tornillos de montaje, 2 prensaestopas, 2 cubetas de goma, 1 tornillo de conexión a tierra y 1 etiqueta de seguridad para Francia.
- De 4 a 6 piezas complementarias Sunclix, según el número de MPPT para FLX Pro 5-17.
- Guía de instalación (folleto)
- Guía rápida (póster)
No se incluyen los siguientes elementos:
- Tornillos de seguridad, M5 × 8-12 (opcionales) (no disponibles como productos de SMA Solar Technology AG)

1.5 Identificación del inversor

La etiqueta del producto, situada en su lateral, indica:
- tipo de inversor
- especificaciones importantes
- número de serie, ubicado bajo el código de barras, para la identificación del inversor

1.6 Secuencia de instalación

1. Preste especial atención a 1.1 Safety Message Types.
2. Instale el inversor según 2.1 Environment and Clearances, 2.2 Mounting the Mounting Plate y 2.3 Mounting the Inverter.
3. Abra el inversor de acuerdo con 2.5 Access to the Installation Area.
4. Instale la CA según 2.6 AC Grid Connection.
5. Instale RS 485 o Ethernet, si fuera necesario, según 2.7 RS-485 or Ethernet Connections.
6. Instale las opciones, si las hubiera, en función de la guía de instalación proporcionada con la opción correspondiente.
7. Cierre el inversor según lo establecido en 2.5 Access to the Installation Area.
8. Instale el dispositivo FV según 2.10 PV Connection.
9. Active la CA con el interruptor de la red eléctrica.
10. Configure el idioma, el modo maestro, la hora, la fecha, la potencia FV instalada, el país y el ajuste de red:
 - Para realizar la configuración mediante la interfaz web, consulte 3.3 Web Interface.
 - Para realizar la configuración desde la pantalla, consulte 3.2 Display.
11. Encienda el dispositivo FV encendiendo el interruptor de carga FV. Consulte 2.10.1 Connection of PV.
12. Compruebe la instalación comparándola con el resultado de detección automática de la pantalla, como se describe en 2.10 PV Connection.

Para instalar y configurar varios inversores FLX Pro en una configuración de maestro-esclavo:
- Lleve a cabo los pasos 2-9 y 11 para cada inversor.
- Lleve a cabo el paso 10 en el que será el inversor maestro.
- Lleve a cabo el paso 12.
1.7 Devolución y eliminación

Cuando se sustituye un inversor, puede devolverse al distribuidor, a SMA Solar Technology AG directamente o eliminarse de acuerdo con la legislación local y nacional. SMA Solar Technology AG está comprometido con su política de responsabilidad medioambiental y, por lo tanto, ruega a los usuarios finales que desechen los inversores que sigan la legislación medioambiental local y que busquen medios de desecho seguros y responsables.

1.7.1 Devolución

Para la devolución a SMA Solar Technology AG, el inversor debe estar siempre en su embalaje original o un embalaje equivalente. Si el producto se devuelve por un fallo del inversor, póngase en contacto con su proveedor del inversor SMA Solar Technology AG.

Para realizar un envío de devolución y obtener más detalles, póngase en contacto con la línea de atención al cliente de SMA Solar Technology AG.

1.7.2 Eliminación

En caso de finalizar la vida útil, el inversor puede devolverse al distribuidor, a SMA Solar Technology AG directamente o desecharse en el país correspondiente. Los gastos de envío al distribuidor o a SMA Solar Technology AG corren a cargo del remitente. El reciclaje y eliminación del inversor debe hacerse cumpliendo la normativa y la legislación vigente en el país donde se desecha. Todo el material de embalaje del inversor es reciclable.
1.8 Información general sobre el área de instalación

<table>
<thead>
<tr>
<th>PELV (contacto seguro)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interfaz RS-485</td>
</tr>
<tr>
<td>2</td>
<td>Ranura opcional A (puede utilizarse para la opción GSM, Sensor Interface opcional u opción PLA)</td>
</tr>
<tr>
<td>3</td>
<td>Interfaz Ethernet</td>
</tr>
<tr>
<td>4</td>
<td>Ranura opcional A (puede utilizarse para la opción GSM, Sensor Interface opcional u opción PLA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pieza en tensión</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Área de conexión FV</td>
</tr>
<tr>
<td>6</td>
<td>Placa de comunicación</td>
</tr>
<tr>
<td>7</td>
<td>Terminal CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otros</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Posición del tornillo de seguridad</td>
</tr>
<tr>
<td>9</td>
<td>Seccionador de corte en carga FV</td>
</tr>
<tr>
<td>10</td>
<td>Posición del tornillo de seguridad</td>
</tr>
</tbody>
</table>

Ilustración 1.3 Información general sobre el área de instalación
2 Instalación

2.1 Entorno y espacios

Ilustración 2.1 Evite el flujo constante de agua

Ilustración 2.2 Evite la luz solar directa

Ilustración 2.3 Asegúrese de que haya suficiente ventilación

Ilustración 2.4 Asegúrese de que haya suficiente ventilación

Ilustración 2.5 Móntelo en una superficie ignífuga

Ilustración 2.6 Móntelo recto en una superficie vertical. Se permite una inclinación de hasta 10º

Ilustración 2.7 Evite que se produzcan polvo y gases de amoníaco

AVISO!

A la hora de elegir el emplazamiento para la instalación, asegúrese de que el inversor y las etiquetas de advertencia permanecen visibles. Si desea más información, consulte S Technical Data.
2.2 Montaje de la placa de montaje

AVISO!
Asegure un espacio libre de 620 mm en la base para que el aire fluya adecuadamente.
AVISO!
La utilización de la placa de montaje suministrada con el inversor es obligatoria.

Montaje de la placa de montaje:
- Móntela en el entorno definido.
- Utilice unos tornillos y tacos apropiados que puedan soportar el peso del inversor con seguridad.
- Asegúrese de que la placa de montaje está bien alineada.
- Tenga en cuenta los espacios de seguridad cuando instale uno o más inversores, para garantizar un flujo de aire adecuado. Los espacios libres se especifican en Ilustración 2.8 y en la etiqueta de la placa de montaje.
- Se recomienda montar varios inversores en una única fila. Póngase en contacto con su proveedor para obtener instrucciones sobre cómo montar inversores en más de una fila.
- Asegúrese de que queda un espacio libre adecuado en la parte delantera para poder acceder al inversor para las tareas de mantenimiento.

2.3 Montaje del inversor

PRECAUCIÓN
Para manipular de forma segura el inversor, es necesario que dos personas transporten la unidad, o bien utilizar una carretilla para su transporte. Lleve botas de seguridad.

Procedimiento:

1. Eleve el inversor. Coloque las ranuras en el lateral de la placa de montaje.
2. En el inversor, coloque los tornillos laterales contra las ranuras de la placa de montaje.

3. Empuje el inversor tal y como se muestra, de manera que los tornillos laterales se deslicen en las dos ranuras inferiores y, a continuación, en las dos superiores. Consulte Ilustración 2.12 y Ilustración 2.13.

4. Compruebe que los 4 tornillos laterales se hayan asentado correctamente en las ranuras de la placa de montaje.

5. Suelte el inversor.

Protección antirrobo (opcional)

Para proteger el inversor contra cualquier robo, sujételo de la siguiente forma:

1. Utilice dos tornillos de seguridad, M5 × 8-12 (no incluidos).
2. Introduzca los tornillos en los orificios antirrobo existentes (consulte Ilustración 1.3), a través de la placa de montaje de la pared.
3. Apriete los tornillos.

2.4 Desmontaje del inversor

Procedimiento:

1. Realice el desmontaje en el orden inverso al del proceso de montaje.
2. Eleve el inversor. La unidad deben cargarla dos personas.
3. Agarre firmemente la base del inversor, levántelo y deslícelo fuera de las ranuras de la placa de montaje.
4. Retire el inversor de la placa de montaje.

2.5 Acceso al área de instalación

PRECAUCIÓN

Tenga en cuenta el reglamento de seguridad ESD. Descargue las cargas electrostáticas tocando la carcasa conectada a tierra antes de manejar cualquier componente electrónico.

Procedimiento:

1. Para abrir la cubierta, afloje los dos tornillos inferiores de la parte delantera con un destornillador TX 20. Los tornillos no pueden caerse.
2. Levante la cubierta 180°. Un imán mantiene la cubierta abierta.
3. Para cerrar la cubierta, bájela hasta colocarla en su sitio y apriete los dos tornillos frontales.
2.6 Conexión de red de CA

En el cable de CA, quite el aislamiento de los cinco cables. El cable PE debe ser más largo que los cables neutros y de la red eléctrica. Consulte Ilustración 2.16.

L1, L2 y L3	3 cables de la red eléctrica
N	Cable neutro
PE1	Conexión primaria a tierra protectora
PE2	Conexión secundaria a tierra protectora

1. Compruebe que la clasificación del inversor coincide con la red.
2. Asegúrese de que el interruptor principal esté suelto y tome precauciones para evitar que se vuelva a conectar.
3. Abra la cubierta frontal.
4. Introduzca el cable a través del prensaestopas de CA hasta el bloque de terminales.
5. Conecte los tres cables de la red eléctrica (L1, L2 y L3), el cable neutro (N) y el cable de conexión a tierra protectora (PE) al bloque de terminales con el marcado correspondiente.
6. Opcional: conecte un PE adicional en los puntos de conexión a tierra PE secundarios.
7. Todos los cables deben estar correctamente sujetos con el par correcto. Consulte 5.6 Torque Specifications.

PRECAUCIÓN
Compruebe que el cableado es correcto. Si conecta un cable de fase al terminal neutro, puede dañar el inversor de forma permanente.

AVISO!
Apriete bien todos los tornillos y prensaestopas.

AVISO!
Este producto puede generar corriente continua (CC) que supere los 6 mA al cable PE externo conectado a tierra. Cuando se utilice un dispositivo de corriente residual protector (RCD) o de control de corriente residual (RCM) para la protección en caso de contacto directo o indirecto, solo se permite un RCD o RCM de tipo B en el lado de suministro del producto. Al aplicar un RCD, este debe tener una sensibilidad de 300 mA para evitar la desconexión. Los sistemas de TI no son compatibles.

AVISO!
Para obtener información sobre los fusibles y el RCD, consulte 5 Technical Data.

2.7 Conexiones Ethernet o RS-485
Antes de conectar los cables RS-485 o Ethernet, consulte los requisitos en 5.9 RS-485 and Ethernet Connections.

Procedimiento:
1. No retire el conector RJ-45.
2. Guíe los cables por la base del inversor a través de los prensaestopas. Consulte ilustración 2.18.
3. Enchufe el conector RS-485 o Ethernet.

AVISO!
Apriete bien todos los tornillos y prensaestopas.

2.8 Opciones
Para instalar las opciones, consulte la guía de instalación de la opción correspondiente.

AVISO!
Apriete bien todos los tornillos y prensaestopas.
2.9 Cierre

2. Active la potencia de CA.

2.10 Conexión FV

ADVERTENCIA
Los módulos FV producen tensión cuando se exponen a la luz.
NO conecte el dispositivo FV a tierra.

Utilice un voltímetro adecuado que pueda medir hasta 1000 V CC.

1. Monte los conectores Sunclix (no incluidos) en los cables FV, según lo indiquen Ilustración 2.21.
2. Compruebe la polaridad y la tensión máxima de las matrices FV midiendo la tensión de circuito abierto FV. Consulte Ilustración 2.21.
 - La tensión de circuito abierto FV no debe superar los 1000 V CC. El inversor está protegido contra una polaridad inversa y no generará ninguna potencia hasta que la polaridad sea correcta. La polaridad inversa no daña el inversor ni los conectores.

Ilustración 2.21 Polaridad correcta: montaje del conector Sunclix en el cable

1. Mida la tensión de CC entre el terminal positivo de la matriz FV y tierra (o el cable de PE verde / amarillo).
 - La tensión medida debe aproximarse a cero. Si la tensión es constante y no es cero, existe un fallo de aislamiento en algún punto de la matriz FV.
2. Localice y solucione el fallo antes de continuar.
3. Repita este proceso para todas las matrices. La distribución irregular de la potencia de entrada en las entradas FV está permitida si:
 - No hay sobrecarga en la entrada individual. La carga máxima permitida por entrada es de 8000 W.
 - La corriente de cortocircuito máxima de los módulos FV en CPE (condiciones de prueba estándar) no supera los 13,5 A por entrada.
PRECAUCIÓN
Instalación FV
Las entradas FV no utilizadas pueden no estar cortocircuitadas.

Ilustración 2.22 Área de conexión de CC

1. En el inversor, gire el interruptor de carga FV a la posición de desconexión.
2. Conecte los cables FV utilizando los conectores-Sunclix. Asegúrese de que la polaridad sea correcta, consulte Ilustración 2.21.
 - Conecte la pieza de acoplamiento de Sunclix al cable FV.
 - Conecte a cada entrada FV en el área de conexión FV con un «clíc».

Ilustración 2.23 Conecte a la entrada FV.

2.10.1 Valor nominal
El inversor debe ejecutarse únicamente con módulos FV de clase de protección II, que cumplan con la norma IEC 61730, clase de aplicación A.
La tensión nominal del módulo debe ser superior a 480 V (la tensión nominal del módulo habitual es de 1000 V). Esto no evita el uso de cadenas con una tensión de funcionamiento inferior.
Conecte únicamente módulos FV al inversor. No se permiten otras fuentes de energía.
3 Configuración inicial y arranque

3.1 Interfaz de usuario

La interfaz de usuario se compone de:
- Display local. Permite la configuración manual del inversor.
- Interfaz web. Permite el acceso a varios inversores a través de Ethernet.

Elija una interfaz para configurar e iniciar el inversor, ya sea mediante
- Display
 3.2 Display
 3.2.1 Initial Setup via Display
- Interfaz web
 3.3 Web Interface
 3.3.4 Web Interface

No toque la otra interfaz durante la configuración y los procesos de arranque.

Para acceder al menú de información, consulte la Guía de usuario de FLX.

3.1.1 Modos de funcionamiento

El inversor tiene cuatro modos de funcionamiento, indicados mediante LED.

Para obtener más información sobre los LED, consulte la Guía de usuario de la serie FLX.

Desconect. de la red (LED apagados)
Si no ha suministrado potencia a la red de CA durante más de 10 minutos, el inversor se desconecta de la red y se apaga. «Desconect. de la red - modo de espera» es el modo nocturno predeterminado. «Desconect. de la red - modo de suspensión» es el modo nocturno de menor consumo energético.
- Desconect. de la red - modo de espera (LED apagados)
 El inversor se desconecta de la red. Las interfaces de usuario y comunicación permanecen conectadas para que pueda existir comunicación.
- Desconect. de la red - modo de suspensión (LED apagados)
 El inversor se desconecta de la red. Las interfaces de usuario, de comunicación y de opción se desconectan.

Conectando (LED verde parpadeante)
El inversor se inicia cuando la tensión de entrada FV alcanza los 250 V. Realiza una serie de autoparuebas internas, que incluyen la autodetección FV y la medición de la resistencia de aislamiento a tierra del campo FV. Al mismo tiempo, también supervisa los parámetros de red. Si los parámetros de red se encuentran dentro de las especificaciones del periodo estipulado (según ajuste de red), el inversor comienza a suministrar energía a la red.

Conectado a la red (LED verde encendido)
El inversor está conectado a la red y suministra energía. El inversor se desconecta si:
- detecta condiciones de red anormales (en función del ajuste de red) o
- se produce una incidencia interna o
- no hay suficiente potencia FV disponible (no se suministra potencia a la red durante 10 minutos).

El inversor entra, entonces, en modo de conexión o en modo desconect. de la red.

A prueba de fallos (LED rojo parpadeante)
Si el inversor detecta un error en sus circuitos durante la autoparueba (en modo de conexión) o durante el funcionamiento, el inversor pasará al modo «A prueba de fallos» y se desconectará de la red. El inversor permanecerá en modo a prueba de fallos hasta que la potencia FV esté ausente durante un mínimo de 10 minutos o cuando el inversor se desconecte por completo (CA+FV).

3.1.2 Nivel de seguridad

Tres niveles de seguridad predefinidos filtran el acceso del usuario a los menús y las opciones.

Niveles de seguridad:
- Nivel [0]: acceso general. No se necesita contraseña.
- Nivel [1]: instalador o técnico de mantenimiento. Se necesita contraseña para acceso ampliado.
- Nivel [2]: instalador o técnico de mantenimiento. Se necesita contraseña para acceso ampliado.

Cuando se inicia sesión en la interfaz web como administrador, el nivel de seguridad es el [0].
El acceso a los niveles [1] y [2] requiere un inicio de sesión de mantenimiento, compuesto por una Id. de usuario y una contraseña.

- El inicio de sesión de mantenimiento proporciona un acceso directo a un nivel de seguridad especifico durante el día actual.
- Obtenga el inicio de sesión de mantenimiento de SMA Solar Technology AG.
- Introduzca el inicio de sesión en la pantalla o en el cuadro de diálogo de inicio de sesión de la interfaz web.
- Cuando finalice la tarea de mantenimiento, cierre sesión en [Configuración → Seguridad].
- El inversor desconecta automáticamente al usuario después de 10 minutos de inactividad.

Los niveles de seguridad son similares en la pantalla y la interfaz web. Un nivel de seguridad proporciona acceso a todos los elementos del menú del mismo nivel de seguridad, así como a todos los elementos de un nivel de seguridad inferior.

3.1.3 Preparación del inversor maestro

La función de modo maestro permite designar un inversor como inversor maestro para la red del mismo. El inversor maestro accede a los otros inversores de la red, permitiendo:

- la replicación de los ajustes y los datos del resto de la red, facilitando la puesta en marcha y la gestión de datos;
- el control de la potencia en la planta (control de los servicios auxiliares);
- la recuperación de datos de la red, para su representación gráfica en la interfaz web, carga a un almacen de datos o exportación a un PC.

Antes de habilitar el modo maestro, asegúrese de que se cumplen los siguientes requisitos:

- no hay más inversores maestros en la red.
- Ethernet está conectado desde el PC a la interfaz RJ45 del inversor, mediante un cable de conexión (cable de red cat5e, cruzado o recto). Consulte 2.7 RS-485 or Ethernet Connections.
- la opción Sensor Interface está instalada, al igual que los sensores, cuando se necesitan los datos del sensor.
- la ubicación más cercana al router tiene una topología en red con conexión en cadena.

Tras habilitar el modo maestro, realice una exploración de red para comprobar que todos los inversores follower están conectados al inversor master. Para iniciar la exploración, diríjase a [Configuración → Detalles del inversor → Modo master → Red].

3.1.4 Configuración FV manual

Ajuste el inversor para configuración FV manual:

- a través de la pantalla, nivel de seguridad 1, en [Configuración → Detalles de la configuración → Configuración FV]
- a través de la interfaz web, nivel de seguridad 0, en [Nivel del inversor: Configuración → Detalles de la configuración → Configuración FV].

Cuando se establece la configuración FV manual en el inversor, la detección automática se anula, consecuentemente.

Ajuste manualmente la configuración FV en la pantalla:

1. Active la CA para iniciar el inversor.
2. Obtenga la contraseña de instalador del distribuidor. Vaya a [Configuración → Seguridad → Contraseña] e introduzca la contraseña.
3. Pulse [Atrás]. Utilice las flechas para ir a [Configuración → Detalles de configuración → Configuración FV].
5. Ajuste la configuración de la entrada FV para que coincida con el cableado, en: [Configuración → Detalles de la configuración → Configuración FV]
 - Entrada FV 1: individual, paralela o desconectada
 - Entrada FV 2: individual, paralela o desconectada
 - Entrada FV 3: individual, paralela o desconectada

3.2 Pantalla

AVISO:

El display tarda como máximo 10 segundos en activarse tras el arranque.

El display integrado en la parte frontal del inversor proporciona al usuario acceso a la información del sistema FV y del inversor.
El display tiene 2 modos:

1. **Normal**: el display se está utilizando.
2. **Ahorro de energía**: transcurridos 10 minutos de inactividad, se desconecta la retroiluminación del display para ahorrar energía. Pulse cualquier tecla para reactivarlo.

Tabla 3.1 Información general de los botones y funciones del display

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Función</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Visualización 1 / visualización 2, pantalla</td>
<td>Al seleccionar las teclas F1-F4, se iluminará el LED situado en la parte superior de la tecla</td>
</tr>
<tr>
<td>F2</td>
<td>Menú Estado</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>Menú Registro de producción</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>Menú Configuración</td>
<td></td>
</tr>
<tr>
<td>Inicio</td>
<td>Volver a la pantalla Visualización</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Intro / selección</td>
<td></td>
</tr>
<tr>
<td>Flecha arriba</td>
<td>Un paso arriba / incrementar valor</td>
<td></td>
</tr>
<tr>
<td>Flecha abajo</td>
<td>Un paso abajo / disminuir valor</td>
<td></td>
</tr>
<tr>
<td>Flecha derecha</td>
<td>Se mueve el cursor hacia la derecha.</td>
<td></td>
</tr>
<tr>
<td>Flecha izquierda</td>
<td>Se mueve el cursor hacia la izquierda.</td>
<td></td>
</tr>
<tr>
<td>Atrás</td>
<td>Volver / anular selección</td>
<td></td>
</tr>
<tr>
<td>Encendido / LED verde</td>
<td>Encendido / Parpadeando = Conectado a la red / Conectado</td>
<td></td>
</tr>
<tr>
<td>Alarma / LED rojo</td>
<td>Parpadeando = A prueba de fallos</td>
<td></td>
</tr>
</tbody>
</table>

AVISO:

El nivel de contraste del display puede ser modificado pulsando la tecla de flecha arriba / abajo, mientras se mantiene pulsada la tecla F1.

La estructura del menú se divide en cuatro secciones principales:

1. **Vista**: se trata de una breve lista de información, solo lectura.
2. **Estado**: muestra las lecturas de los parámetros del inversor, solo lectura.
3. **Registro**: muestra los datos registrados.
4. **Configuración**: muestra los parámetros configurables, lectura / escritura.

Consulte los siguientes apartados para obtener información más detallada.

3.2.1 Configuración inicial mediante el display

El inversor se suministra con un conjunto de ajustes predeterminados para las diversas redes con las que puede funcionar. Estos límites específicos de cada red se almacenan en el inversor y deben seleccionarse durante la instalación. Siempre puede ver en el display los límites aplicados a la red.

Tras la instalación, compruebe todos los cables y, a continuación, cierre el inversor. Active la CA con el interruptor de la red eléctrica. La dirección IP se puede ver en el display durante la puesta en marcha.

Seleccione el idioma cuando se solicite en el display. Esta selección no influye en los parámetros de funcionamiento del inversor, y no se trata de una selección de ajuste de red.
En la puesta en marcha inicial, está preseleccionado el idioma inglés. Para cambiarlo, pulse el botón [OK]. Pulse [▼] para desplazarse por los idiomas disponibles. Pulse [OK] para seleccionar el idioma que desee.

AVISO!

Para utilizar el idioma predefinido (inglés), simplemente pulse el botón [OK] dos veces para seleccionar y aceptar.

Para activar el modo maestro, vaya al menú Detalles del inversor [Configuración → Detalles del inversor → Modo master] y ajuste el modo master a la posición Activado.

El reloj tiene un formato de 24 horas. El inversor se ajusta a los cambios de horario de forma automática.

AVISO!

Ajuste la fecha y la hora con precisión. El inversor utiliza esta información para el registro. Si se configuran la hora y la fecha equivocadas de forma accidental, corrijalas inmediatamente en el menú de configuración de fecha y hora [Configuración → Detalles del inversor → Ajustar fecha y hora].

Introduzca la potencia FV instalada para cada una de las entradas FV. Si un grupo de entradas FV están conectadas en paralelo, introduzca la potencia FV media instalada en cada entrada FV, tal y como se muestra en los ejemplos.

<table>
<thead>
<tr>
<th>Configuración de rama FV</th>
<th>Introduzca este valor para «potencia FV instalada»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejemplo 1: FV1, FV2 y FV3 están en modo individual. La potencia nominal FV instalada es: FV 1: 6000 W FV 2: 6000 W FV 3: 3000 W</td>
<td>FV 1: 6000 W FV 2: 6000 W FV 3: 3000 W</td>
</tr>
<tr>
<td>Ejemplo 2: FV1 y FV2 están en modo paralelo y tienen una potencia FV total instalada de 10 kW. FV3 está en modo individual, con una potencia nominal FV de 4 kW.</td>
<td>FV 1: 5000 W FV 2: 5000 W FV 3: 4000 W</td>
</tr>
<tr>
<td>Ejemplo 3: FV1 y FV2 están en modo paralelo y tienen una potencia FV total instalada de 11 kW. FV3 está en [Apagado] y no tiene potencia FV instalada.</td>
<td>FV 1: 5500 W FV 2: 5500 W FV 3: 0 W</td>
</tr>
</tbody>
</table>

En la pantalla, se mostrará la opción «Seleccionar ajuste de red». El ajuste de red predeterminado es «indefinido» en el arranque inicial. Para seleccionar el ajuste de red, pulse [OK]. Pulse [▼] para desplazarse por la lista. Pulse [OK] para seleccionar el ajuste de red para la instalación. Es muy importante seleccionar el ajuste de red correcto.
Ilustración 3.9 Confirme el ajuste de red.

Para confirmar, vuelva a seleccionar el ajuste de red y pulse [OK]. La configuración del ajuste de red seleccionado se habrá activado.

ADVERTENCIA

La selección del ajuste de red correcto es fundamental para cumplir los estándares nacionales y locales.

AVISO!

Si las dos selecciones de ajuste de red no coinciden, se cancelarán y tendrán que volver a realizarse las selecciones. Si en la primera selección se equivocaba al aceptar el ajuste de red, simplemente acepte «Red: indefinida» en la ventana de confirmación de la selección. Se cancelará la selección de ajuste de red y se podrá realizar una nueva selección.

AVISO!

El inversor está protegido contra polaridad invertida. El inversor no genera potencia hasta que no se corrija cualquier polaridad invertida.

3.2.2 Encienda el interruptor de carga FV

Ilustración 3.10 Encienda el interruptor de carga FV

3.2.3 Arranque

Si hay suficiente irradiación solar, el inversor se iniciará automáticamente. Tardará unos minutos en ponerse en marcha. Durante este intervalo, el inversor realizará una autopregunta.

AVISO!

Para ciertos ajustes de red, puede llevarse a cabo una verificación automática del inversor activando el procedimiento de verificación automática del mismo.

- Mediante la pantalla, vaya a [Configuración → Verificación automática] y pulse [OK].

3.3 Interfaz web

Estas instrucciones describen la interfaz web, que facilita el acceso remoto al inversor. Consulte la zona de descarga en www.SMA.de para obtener las instrucciones más recientes. Para todas las entradas de texto, el software admite caracteres compatibles con Unicode.

- No se permiten espacios para el nombre del inversor.

Para el nombre de la planta, el grupo y el inversor, solo se admiten los caracteres siguientes:
3.3.1 Preparación para la configuración

Asegúrese de que los siguientes elementos están listos antes de comenzar la configuración:

- se ha designado y preparado el inversor maestro, consulte 3.1.3 Preparation for Master Inverter.
- se ha establecido la conexión a Ethernet desde el PC al inversor, consulte también 2.7 RS-485 or Ethernet Connections.

3.3.2 Configuración inicial mediante la interfaz web

Precaución

Cambie el nombre de inicio de sesión y la contraseña de Web Server del inversor master inmediatamente para mejorar el nivel de seguridad cuando se conecte a internet. Para cambiar la contraseña, vaya a [Configuración → Web Server → Administrador].

Secuencia de configuración

1. Asegúrese de que se ha designado y preparado el inversor master, consulte 3.1.3 Preparation for Master Inverter.
2. En el PC, espere a que Windows notifique conectividad limitada (si no existe un DHCP). Abra el explorador de internet y asegúrese de que las ventanas emergentes estén habilitadas.
3. Escriba una de las opciones siguientes en la barra de dirección:
 - Para Windows 7 y versiones de Windows más recientes: http://Dirección IP. La dirección IP se puede ver en el display.

No es posible utilizar el asistente de instalación con Windows 7 y 8; localice el número de serie en la etiqueta del producto, ubicada en el lateral de la carcasa del inversor. Consulte Ilustración 1.2.

1. Se abre el cuadro de diálogo de inicio de sesión de la interfaz web.
2. Escriba «administrador» en los campos usuario y contraseña y haga clic en «Conectar».
3. Al iniciar sesión por primera vez, el inversor ejecuta un asistente de configuración.

3.3.3 Asistente de configuración

Paso 1 de 8: idioma del display
Selezione el idioma del display.
- El idioma predeterminado es el inglés.
AVISO!
Esta selección define el idioma del display, no el ajuste de red.

Asistente de configuración: paso 1 de 8

Se seleccione el idioma que utilizará el inversor

Idioma de la pantalla: Español

Siguiente

Ilustración 3.11 Paso 1 de 8: idioma del display

Para cambiar el ajuste de idioma más tarde, vaya a [Configuración → Detalles de configuración].

Paso 2 de 8: configuración de inversor master

Para configurar un inversor master, haga clic en «Configurar como master».

- Se ejecuta una exploración para identificar a los inversores en la red.
- Una ventana emergente muestra los inversores que se han identificado correctamente.

Haga clic en [Aceptar] para confirmar que se ha detectado el número correcto de inversores.

Asistente de configuración: paso 2 de 8

Configure el inversor como maestro si no hay uno en la red

[Configurar como maestro]

(la exploración de red empezará automáticamente, espere a que termine y verifique la lista de inversores encontrados)

Anterior Siguiente

Ilustración 3.12 Paso 2 de 8: configuración de inversor master

Para cambiar este ajuste más tarde, diríjase a [Nivel del inversor: Configuración → Detalles del inversor].

Paso 3 de 8: fecha y hora

Introduzca:

- Hora en formato de 24 horas
- Fecha
- Zona horaria
La precisión es muy importante porque la fecha y la hora se usan para efectos de registro. El ajuste para el ahorro de luz diurna es automático.

Asistente de configuración: paso 3 de 8

Ajuste la hora y la fecha del inversor

<table>
<thead>
<tr>
<th>Hora (hh:mm:ss)</th>
<th>10:17:45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha (dd-mm-aaaa)</td>
<td>2012-11-19</td>
</tr>
<tr>
<td>Zona horaria</td>
<td>GMT+0</td>
</tr>
</tbody>
</table>

Ilustración 3.13 Paso 3 de 8: fecha y hora

Para cambiar este ajuste más tarde, diríjase a [Nivel del inversor: Configuración → Configurar fecha y hora].

Paso 4 de 8: potencia instalada

Para cada entrada FV, introduzca la potencia FV instalada.

Los valores de la potencia FV instalada se utilizan para calcular la proporción de rendimiento. Si desea obtener más información, consulte la Guía de diseño de la serie FLX.

PRECAUCIÓN

Una configuración incorrecta puede tener consecuencias graves en la eficacia de producción.

Asistente de configuración: paso 4 de 8

Configure la cantidad de potencia FV instalada conectada a cada una de las entradas FV de los inversores

<table>
<thead>
<tr>
<th>Potencia de matriz PV1</th>
<th>6000 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de matriz PV2</td>
<td>6000 W</td>
</tr>
<tr>
<td>Potencia de matriz PV3</td>
<td>6000 W</td>
</tr>
</tbody>
</table>

Ilustración 3.14 Paso 4 de 8: potencia instalada
Para modificar la potencia instalada, vaya a [Nivel del inversor: Configuración → Calibración, Matriz FV].

Paso 5 de 8: país de instalación
Selezione el ajuste que corresponda con la ubicación de la instalación.

PRECAUCIÓN
Seleccionar el ajuste correcto es fundamental para cumplir los estándares nacionales y locales.

Asistente de configuración: paso 5 de 8
Selezione el ajuste de país que utilizará el inversor

País: Alemania

Ilustración 3.15 Paso 5 de 8: país de instalación

Paso 6 de 8: ajuste de red
Selezione el ajuste de red para corresponderse con la instalación.

- El ajuste predeterminado es [indefinido]

Selezione otra vez el ajuste de red para confirmar.

- El ajuste se activa inmediatamente.
PRECAUCIÓN
Seleccionar el ajuste correcto es fundamental para cumplir los estándares nacionales y locales.

Asistente de configuración: paso 6 de 8

Se seleccione la red específica que utilizará el inversor

País: Alemania

Red: Tensión media

Red: Tensión media (Vuelva a seleccionar el código de red)

Es importante introducir la configuración de código de red correcta.

Descripción detallada de los códigos de red seleccionables: Mostrar la lista de red

Anterior Siguiente

Ilustración 3.16 Paso 6 de 8: ajuste de red

AVISO!
Si los ajustes iniciales y de confirmación son distintos,
- la selección de ajuste de red se cancela y
- el asistente se reanuda en el paso 5.

Si los ajustes iniciales y de confirmación coinciden pero no son correctos, póngase en contacto con la asistencia técnica.

Paso 7 de 8: replicación
Este paso está disponible para un inversor master con esclavos conectados. Para replicar los ajustes de los pasos 1-6 al resto de inversores de la misma red:
- seleccione los inversores,
- haga clic en [Replicar].
AVISO!

No realice la replicación si la configuración FV, la potencia FV instalada y el área de la matriz FV de los inversores follower en la red son distintos a los del inversor master. Configure los inversores follower de forma individual.

Asistente de configuración: paso 7 de 8

Replique los ajustes del inversor maestro en los esclavos seleccionados

- Todo Nombre
- Slave
- abc123456 (Maestro)

Replicar Siguiente

Ilustración 3.17 Paso 7 de 8: replicación

Paso 8 de 8: arranque del inversor

Asistente de configuración: Paso 8 de 8

El inversor está configurado y listo para funcionar.

Resumen de configuración:
- **Idioma:** Español
- **País:** Alemania
- **Red:** Tensión media

- **Hora:** 10:19:51
- **Fecha:** 2012-11-19

Potencia de matriz FV1: 6000 W
Potencia de matriz F2: 6000 W
Potencia de matriz FV3: 6000 W

![Finalizar](image)

Ilustración 3.18 Paso 8 de 8: arranque del inversor

Para cambiar la configuración más tarde, acceda al inversor a través de la interfaz web o el display, en el nivel del inversor.

- Para cambiar el nombre del inversor, vaya a [Nivel del inversor: Configuración → Detalles del inversor].
- Para habilitar el modo master, vaya a [Nivel del inversor: Configuración → Detalles del inversor].
3.3.4 Interfaz web

La vista general de la interfaz web está estructurada de la forma siguiente.

1. Nombre de la planta: muestra el nombre de la planta actual.
 - Haga clic en el nombre de la planta para mostrar la vista de planta.
 - Cambie el nombre de la planta en [Configuración → Detalles de la planta].

2. Menú Grupo: muestra los grupos de inversores.
 - Los inversores se unen al grupo 1 por defecto.
 - Haga clic en un nombre de grupo para mostrar la vista de grupo, así como una lista de los inversores que pertenecen al grupo.
 - Cambie el nombre del grupo en [Configuración → Detalles del inversor] en la vista de inversor.

3. Miembros del grupo: muestra los nombres de inversor en el grupo seleccionado actualmente. El nombre de inversor por defecto se basa en el número de serie.
 - Haga clic en un nombre de inversor para mostrar la vista de inversor.
 - Cambie el nombre del inversor en [Configuración → Detalles del inversor] en la vista de inversor.

4. Menú principal: este menú se corresponde con el menú principal del display del inversor.

5. Submenú: el submenú se corresponde con el elemento del menú principal seleccionado actualmente. Aquí se muestran todos los elementos del submenú que pertenecen a un menú principal específico.

6. Área de contenido: el menú principal y los submenús de la interfaz web son idénticos a los menús del display del inversor. El contenido del submenú mostrado se corresponde con el submenú seleccionado: [Vista general]. En algunas páginas, se añade un menú horizontal para facilitar la lectura.

7. Barra inferior: opciones de la barra inferior:
• **Idioma:** abre una ventana emergente. Haga clic en la bandera del país para cambiar el idioma de la interfaz web al idioma deseado para esta sesión.

• **Contacto:** abre una ventana emergente que muestra la información de contacto de SMA Solar Technology AG.

• **Cierre de sesión:** abre el cuadro de diálogo de inicio / cierre de sesión.

3.3.5 Vistas de planta, grupo e inversor

Las pantallas de información general para las vistas de planta, de grupo y de inversor muestran la misma información de estado global.

AVISO:
El contenido del menú principal cambia en función de la vista seleccionada actualmente: la planta, el grupo de inversores o un inversor individual.
<table>
<thead>
<tr>
<th>Concepto</th>
<th>Unidad</th>
<th>Visualización</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado general de la planta</td>
<td>- x</td>
<td></td>
<td>Rojo: PR planta <50 %, o: cualquier inversor en la red - en modo a prueba de fallos, o - no existe en la lista de exploración, sin contacto con el master</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amarillo: cualquier inversor en la red - con PR<70 % o - en modo Conectando o Desconectado de la red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verde: PR planta ≥70 % y - todos los inversores con PR ≥70 % y - todos los inversores en modo Conectado a la red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>Rojo: PR inversor <50 % o el inversor tiene un error Amarillo: PR inversor entre 51 % y 70 %, o inversor en modo de conexión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verde: sin errores, y - PR inversor ≥70 % e - inversor en modo de red</td>
</tr>
<tr>
<td>Producción de corriente</td>
<td>kW</td>
<td>x</td>
<td>Nivel de producción de energía en tiempo real</td>
</tr>
<tr>
<td>Producción energética diaria</td>
<td>kWh</td>
<td>x</td>
<td>Total de producción energética para el día</td>
</tr>
<tr>
<td>Ingresos totales</td>
<td>Euros</td>
<td>x</td>
<td>Total de ingresos ganados desde el ajuste inicial</td>
</tr>
<tr>
<td>Ahorro de CO₂ total</td>
<td>kg</td>
<td>x</td>
<td>Total de ahorro de CO₂ desde el ajuste inicial</td>
</tr>
<tr>
<td>Proporción de rendimiento</td>
<td>%</td>
<td>x</td>
<td>Proporción de rendimiento en tiempo real</td>
</tr>
<tr>
<td>Producción energética total</td>
<td>kWh</td>
<td>x</td>
<td>Total de producción energética desde el ajuste inicial</td>
</tr>
<tr>
<td>Ajuste del límite de potencia</td>
<td>%</td>
<td>x</td>
<td>Límite de potencia máxima en % de la tensión nominal de salida de CA del inversor</td>
</tr>
</tbody>
</table>

Tabla 3.3 Información mostrada en la vista de planta, pantalla de información general

AVISO:
Para calcular la proporción de rendimiento PR se necesita un sensor de ir radación, consulte [Configuración → Calibración].

3.3.6 Procedimiento de verificación automática

Para ciertos ajustes de red, puede llevarse a cabo una verificación automática del inversor activando el procedimiento de verificación automática del mismo.

- Mediante la interfaz web, vaya a [Nivel del inversor: Configuración → Detalles de la configuración → Verificación automática] y haga clic en [Iniciar → Prueba].
4 Mantenimiento

4.1 Resolución de problemas

Esta guía proporciona tablas en las que se muestran los mensajes que aparecen en el display del inversor, conocidos como incidencias. Las tablas contienen las descripciones y las acciones que deben llevarse a cabo cuando se produce una incidencia. Para la lista completa de incidencias, consulte la Guía de usuario de la serie FLX. Para visualizar las incidencias, vaya al menú de registro y entre en el menú de registro de incidencias. En él encontrará la última incidencia registrada por el inversor, así como la lista de las veinte últimas incidencias registradas. Cuando el inversor se encuentra en el modo de red, la última incidencia se borra y se muestra como 0. El código de incidencias consta de dos elementos: el clasificador de grupo y la Id. de incidencia. El clasificador de grupo describe el tipo general de incidencia, mientras que la Id. de incidencia se utiliza para identificar la incidencia concreta.

Tabla 4.1 puede ver información general sobre cómo están construidas las tablas de incidencias del inversor y cómo utilizarlas.

<table>
<thead>
<tr>
<th>Tipo de incidencia</th>
<th>Indica si la incidencia está relacionada con la red, FV o cuestiones internas del modo «A prueba de fallos».</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id.</td>
<td>La Id. de incidencia concreta.</td>
</tr>
<tr>
<td>Display</td>
<td>Texto mostrado en el display.</td>
</tr>
<tr>
<td>Descripción</td>
<td>Descripción de la incidencia.</td>
</tr>
<tr>
<td>Acción</td>
<td>Descripción de qué acción debe llevarse a cabo antes de ponerse en contacto con terceros.</td>
</tr>
<tr>
<td>DNO</td>
<td>Si la acción descrita no identifica la causa del funcionamiento defectuoso, póngase en contacto con el operador de redes de distribución para obtener más ayuda.</td>
</tr>
<tr>
<td>Línea de asistencia técnica</td>
<td>Si la acción descrita no identifica la causa del funcionamiento defectuoso, póngase en contacto con la línea de asistencia técnica para obtener más ayuda.</td>
</tr>
<tr>
<td>FV</td>
<td>Si la acción descrita no identifica la causa del funcionamiento defectuoso, póngase en contacto con el proveedor de FV para obtener más ayuda.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incidencias relacionadas con la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1–6</td>
</tr>
<tr>
<td>7–9</td>
</tr>
</tbody>
</table>
Id. Mensaje de estado Descripción Acción DNO Línea de asistencia técnica FV

10–15 Tensión de red demasiado alta. Llame al instalador e infórmele acerca de la tensión en la fase de la red. x - -

16–18 El inversor ha detectado un pico de tensión en la red. Compruebe la tensión y la instalación de CA. x - -

19–24 Frecuencia de red demasiado baja o demasiado alta. Póngase en contacto con el instalador para informar acerca de la frecuencia de red. x - -

25–27 Pérdida de la red eléctrica, tensiones fase a fase demasiado bajas. Póngase en contacto con el instalador para informarle acerca de la tensión de las tres fases. Compruebe la tensión fase a fase y la instalación de CA. x - -

28–30 Pérdida de la red eléctrica, ROCOF fuera de rango. Si la incidencia se produce varias veces cada día, póngase en contacto con el operador de red. x - -

31–33 La corriente de red de CC es demasiado alta. Si esta incidencia se produce varias veces cada día, póngase en contacto con el instalador. Instalador: realice un análisis de red in situ. x - -

34–37 La unidad de control de la corriente de fugas (RCMU) ha medido un exceso de corriente. Desconecte la CA y CC y espere hasta que el display se haya apagado. Entonces conecte la CC y CA y observe si se produce la incidencia. Si la incidencia vuelve a producirse, póngase en contacto con el instalador. Instalador: inspección visual de todos los módulos y cables FV. - x -

40 AC grid not OK La red de CA ha estado fuera de rango durante más de 10 minutos (frecuencia o tensión). Póngase en contacto con el instalador para informar acerca de la configuración de la frecuencia, la versión de software y el ajuste de red. Instalador: compruebe la instalación de CA. x - -

41–43 El inversor ha detectado que la tensión de red era inferior a cierto nivel. Si esta incidencia se produce varias veces cada día, póngase en contacto con el instalador. Instalador: realice un análisis de red in situ. x - -

47 PLA below threshold El inversor se desconecta de la red si el PLA es inferior al 3 % de la potencia nominal. Póngase en contacto con el operador de red para obtener el estado de la reducción de potencia activa (PLA). x - -

48–53 Grid frequency too low or too high La corriente de red de CC es demasiado elevada (fase 2). Póngase en contacto con el instalador para informar acerca de la frecuencia de red. Compruebe la instalación de CA. x - -

54–56 Se ha detectado una incidencia de red, y el circuito de seguridad redundante ha detenido el inversor. Si esta incidencia se produce varias veces cada día, póngase en contacto con el instalador. Instalador: realice un análisis de red in situ. x - -

246 Se ha detectado una incidencia de red, y el circuito de seguridad redundante ha detenido el inversor. Se ha detectado una incidencia de red, y el circuito de seguridad redundante ha detenido el inversor. Compruebe el registro de incidencias. Si la mayoría de entradas son del tipo 246, llame al departamento de servicio técnico. De lo contrario, espere 24 h y vuelva a comprobarlo. - x -

Tabla 4.2 Incidencias relacionadas con la red

Incidencias relacionadas con FV

<table>
<thead>
<tr>
<th>Id.</th>
<th>Mensaje de estado</th>
<th>Descripción</th>
<th>Acción</th>
<th>DNO</th>
<th>Línea de asistencia técnica</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-102</td>
<td>PV negative</td>
<td>La corriente de entrada es negativa, polaridad incorrecta. Póngase en contacto con el instalador. Instalador: compruebe la polaridad; si es correcta, llame al servicio técnico.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Mantenimiento

<table>
<thead>
<tr>
<th>Id.</th>
<th>Mensaje de estado</th>
<th>Descripción</th>
<th>Acción</th>
<th>DNO</th>
<th>Línea de asistencia técnica</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-105</td>
<td>PV current is too high/ waiting.</td>
<td>Hay demasiados módulos FV conectados en paralelo. Solo debe aparecer en sistemas recién instalados.</td>
<td>Póngase en contacto con el instalador. Instalador: compruebe el n.º de cadenas en paralelo y las corrientes nominales. ¿Se ha superado el límite de corriente? ¿El inversor ha reducido la corriente FV? Vuelva a conectar las cadenas en paralelo; es posible instalar un segundo inversor.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>112-114</td>
<td>Fallo en la configuración FV</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>115</td>
<td>PV ISO too low</td>
<td>La resistencia entre la toma a tierra y el dispositivo FV es demasiado baja para que el inversor pueda arrancar. Esto obligará al inversor a realizar una nueva medición transcurridos 10 minutos.</td>
<td>Realice una inspección visual de todos los cables FV y los módulos para una instalación correcta según lo establecido en la guía de instalación. La incidencia podría indicar que no existe conexión PE.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>116-118</td>
<td>Polaridad FV incorrecta</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>121-123, 125</td>
<td>FV ISO baja FV1, FV2, FV3, multiple (relacionado con 115)</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>258</td>
<td>PV voltage too high/ waiting</td>
<td>Tensión FV demasiado alta.</td>
<td>Compruebe que la instalación y la disposición corresponden a las recomendaciones de los manuales.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Tabla 4.3 Incidencias relacionadas con FV

Incidencias internas

<table>
<thead>
<tr>
<th>Id.</th>
<th>Mensaje de estado</th>
<th>Descripción</th>
<th>Acción</th>
<th>DNO</th>
<th>Línea de asistencia técnica</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201–208</td>
<td>La temperatura interna del inversor es demasiado elevada.</td>
<td></td>
<td>Asegúrese de que el inversor no está cubierto y de que el conducto de ventilación no está obstruido. En caso contrario, póngase en contacto con el instalador.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>209, 210</td>
<td>Tensión de bus de CC demasiado alta.</td>
<td></td>
<td>Reinicie el inversor desconectando la CC y CA mediante los interruptores. Si la incidencia se vuelve a producir, póngase en contacto con el instalador. Instalador: compruebe la tensión FV máxima mediante la pantalla, para ver si se encuentra por encima de los límites.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>211</td>
<td>Fan rpm low</td>
<td>La velocidad del ventilador es demasiado baja.</td>
<td>¿El ventilador del inversor está bloqueado? Sí: limpie el ventilador, No: póngase en contacto con el instalador.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>212</td>
<td>DC bus balance timeout</td>
<td>El inversor no puede equilibrar el bus de CC.</td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>213–215</td>
<td>Error interno: la tensión medida antes y después del relé difiere en más de 20 V.</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>216–221</td>
<td>La corriente de CA medida es demasiado elevada.</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>
Mantenimiento

<table>
<thead>
<tr>
<th>Id.</th>
<th>Mensaje de estado</th>
<th>Descripción</th>
<th>Acción</th>
<th>DNO</th>
<th>Línea de asistencia técnica</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>RCMU over range</td>
<td>Un cable de la RCMU está roto.</td>
<td>Póngase en contacto con el instalador. Instalador: si la verificación automática no se realiza correctamente, póngase en contacto con el servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>225–240</td>
<td>Fallo en la memoria / EEPROM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241, 242, 249</td>
<td>Error de comunicación interna.</td>
<td></td>
<td>solucionarse, póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>243, 244</td>
<td>Error interno.</td>
<td></td>
<td></td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>247</td>
<td>FSP plausibility fault</td>
<td>Se ha producido un error en la viabilidad del procesador de seguridad funcional.</td>
<td>Compruebe el registro de incidencias en busca de otras incidencias de red (1-55) y siga las instrucciones para estas incidencias. Si la incidencia sigue sin resolverse, póngase en contacto con el instalador.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>248, 251</td>
<td>Self test failed FSP fail safe</td>
<td>Se ha producido un error al realizar la autopregunta.</td>
<td></td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>252-254</td>
<td>La corriente de CA medida es demasiado elevada.</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>255–257</td>
<td>Desconexión de la protección contra el funcionamiento en isla.</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>260</td>
<td>La resistencia entre la toma a tierra y el dispositivo FV es demasiado baja para que el inversor pueda arrancar. Esto obligará al inversor a realizar una nueva medición transcurridos 10 minutos.</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>261-262</td>
<td>Se ha producido un error en las mediciones de la corriente FV.</td>
<td></td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Tabla 4.4 Incidencias internas

Incidencias provocadas por la autopregunta

<table>
<thead>
<tr>
<th>Id.</th>
<th>Descripción</th>
<th>Acción</th>
<th>DNO</th>
<th>Línea de asistencia técnica</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-271</td>
<td>Se ha producido un error en la prueba del circuito de medición.</td>
<td>Reinicie el inversor. Si la incidencia sigue sin solucionarse, póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>352</td>
<td>Se ha producido un error en la autopregunta de la RCMU.</td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>353</td>
<td>Se ha producido un error en la prueba del sensor de corriente.</td>
<td></td>
<td></td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>356-363</td>
<td>Se ha producido un error en la prueba del transistor y el relé o en el relé del inversor (se supone que el contacto está soldado).</td>
<td></td>
<td></td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>364</td>
<td>La conexión a neutro no existe o está dañada</td>
<td>Póngase en contacto con el instalador. Instalador: Compruebe si hay algún fallo en la conexión a neutro en la instalación de CA. Llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>365</td>
<td>Se ha producido un error en el cable a tierra.</td>
<td>Póngase en contacto con el instalador. Instalador: llame al servicio técnico.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>
4.2 Mantenimiento

Normalmente, el inversor no necesita mantenimiento ni calibración.

Asegúrese de que no se cubre el disipador térmico en la parte posterior del inversor.

Limpie los contactos del dispositivo FV una vez al año. Realice la limpieza alternando el interruptor en las posiciones de encendido y apagado diez veces. El interruptor de carga FV se encuentra en la base del inversor.

Para garantizar un funcionamiento correcto y una larga vida útil, asegure la libre circulación de aire:
- alrededor del disipador térmico, en la parte superior y lateral del inversor, donde el aire se agota y
- al ventilador de la base del inversor.

Para despejar las obstrucciones, limpie utilizando aire a presión, un paño suave o un cepillo.

ADVERTENCIA

La temperatura del disipador térmico puede superar los 70 °C.
Datos técnicos

5.1 Especificaciones

5.1.1 Especificaciones del inversor

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[S]</td>
<td>Potencia nominal aparente</td>
<td>5 kVA</td>
</tr>
<tr>
<td>P<sub>AC</sub></td>
<td>Potencia nominal activa<sup>1</sup></td>
<td>5 kW</td>
</tr>
<tr>
<td></td>
<td>Potencia activa en cos(ϕ) = 0,95</td>
<td>4,75 kW</td>
</tr>
<tr>
<td></td>
<td>Potencia activa en cos(ϕ) = 0,90</td>
<td>4,5 kW</td>
</tr>
<tr>
<td></td>
<td>Rango de potencia reactiva</td>
<td>0-3,0 kVAr</td>
</tr>
<tr>
<td>V<sub>AC</sub></td>
<td>Tensión de CA nominal (intervalo de tensión de CA)</td>
<td>3P + N + PE - 230/400 V (±20 %)</td>
</tr>
<tr>
<td></td>
<td>Corriente CA nominal</td>
<td>3 × 7,2 A</td>
</tr>
<tr>
<td>I<sub>canmáx</sub></td>
<td>Corriente de CA máx.</td>
<td>3 × 7,5 A</td>
</tr>
<tr>
<td></td>
<td>Distorsión de la corriente alterna (CA) (THD a potencia nominal, %)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Corriente de irrupción</td>
<td>9,5 A / 10 ms</td>
</tr>
<tr>
<td>cosϕ<sub>AC</sub></td>
<td>Factor de potencia al 100 % de carga</td>
<td>>0,99</td>
</tr>
<tr>
<td></td>
<td>Intervalo de control del factor de potencia</td>
<td>0,8 inductivo</td>
</tr>
<tr>
<td></td>
<td>Consumo en modo de espera</td>
<td>2,7 W</td>
</tr>
<tr>
<td>f<sub>r</sub></td>
<td>Frecuencia de red nominal (rango)</td>
<td>50 (±5 Hz)</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potencia de entrada FV máxima por MPPT</td>
<td>5,2 kW</td>
</tr>
<tr>
<td></td>
<td>Potencia nominal CC</td>
<td>5,2 kW</td>
</tr>
<tr>
<td>V<sub>CC</sub></td>
<td>Tensión nominal CC</td>
<td>715 V</td>
</tr>
<tr>
<td>V<sub>min</sub>/V<sub>max</sub></td>
<td>Tensión MPP - seguimiento activo<sup>2</sup> / potencia nominal<sup>3</sup></td>
<td>220/250 - 800 V</td>
</tr>
</tbody>
</table>
Datos técnicos

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Eficiencia MPP, estática</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eficiencia MPP, dinámica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Vccmáx.” Tensión de CC máx.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Vccarr.” Tensión CC de encendido</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Vccmín.” Tensión CC de apagado</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Iccmáx.” Corriente MPP máx.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC de cortocircuito máx. (en STC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mín. en potencia de red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eficiencia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eficiencia máx.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eficiencia europea, V a cc, r</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otros</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensiones (al., an., pr.), inversor / incl. embalaje</td>
<td>667 × 500 × 233 mm / 774 × 570 × 356 mm</td>
</tr>
<tr>
<td></td>
<td>Recomendación de montaje</td>
<td>Placa de montaje</td>
</tr>
<tr>
<td></td>
<td>Peso, inversor / incl. embalaje</td>
<td>38 kg / 44 kg</td>
</tr>
<tr>
<td></td>
<td>Nivel de ruido acústico4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Seguidores MPP</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intervalo de temperatura de funcionamiento</td>
<td>de –25 a 60 °C</td>
</tr>
<tr>
<td></td>
<td>Intervalo de temperatura nom.</td>
<td>de –25 a 45 °C</td>
</tr>
<tr>
<td></td>
<td>Temperatura de almacenamiento</td>
<td>de –25 a 60 °C</td>
</tr>
<tr>
<td></td>
<td>Funcionamiento con sobrecarga</td>
<td>Cambio del punto de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>Categorías de sobretensión</td>
<td>Red: OVC III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FV: OVC II</td>
</tr>
</tbody>
</table>

Tabla 5.1 Especificaciones

1) A tensión de red nominal (V_{cc,nom}), Cos(ϕ)=1.

2) Para utilizar la gama completa, deben considerarse disposiciones asimétricas, incluida la tensión de arranque para al menos 1 cadena. Alcanzar la potencia nominal dependerá de la configuración.

3) A configuración de entrada simétrica.

4) Nivel SPL (nivel de presión acústica) a 1 m en condiciones de funcionamiento normales. Medido a 25 °C.
<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>12,5</td>
</tr>
<tr>
<td>CA</td>
<td>10 kVA</td>
<td>12,5 kVA</td>
</tr>
<tr>
<td>$P_{ac,r}$</td>
<td>10 kW</td>
<td>12,5 kW</td>
</tr>
<tr>
<td></td>
<td>9,5 kW</td>
<td>11,9 kW</td>
</tr>
<tr>
<td></td>
<td>9,0 kW</td>
<td>11,3 kW</td>
</tr>
<tr>
<td></td>
<td>0-6,0 kVAR</td>
<td>0-7,5 kVAR</td>
</tr>
<tr>
<td>$V_{ac,r}$</td>
<td>3P + N + PE - 230/400 V (±20 %)</td>
<td></td>
</tr>
<tr>
<td>I_{can}</td>
<td>3 x 14,5 A</td>
<td>3 x 18,2 A</td>
</tr>
<tr>
<td>I_{can}</td>
<td>3 x 15,1 A</td>
<td>3 x 18,8 A</td>
</tr>
<tr>
<td>Distorsión de la corriente alterna (CA) (THD a potencia nominal, %)</td>
<td>-</td>
<td><2 %</td>
</tr>
<tr>
<td>I_{can}</td>
<td>0,5 A / 10 ms</td>
<td></td>
</tr>
<tr>
<td>$cosphi_{ac,r}$</td>
<td>>0,99</td>
<td></td>
</tr>
<tr>
<td>Intervalo de control del factor de potencia</td>
<td>0,8 inductivo</td>
<td></td>
</tr>
<tr>
<td>Consumo en modo de espera</td>
<td>2,7 W</td>
<td></td>
</tr>
<tr>
<td>f_r</td>
<td>50 (±5 Hz)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>10,4 kW</td>
<td>12,9 kW</td>
</tr>
<tr>
<td>$V_{cc,r}$</td>
<td>715 V</td>
<td></td>
</tr>
<tr>
<td>$V_{cc, máx}$</td>
<td>220/430 - 800 V</td>
<td>220/360 - 800 V</td>
</tr>
<tr>
<td>$V_{cc, min}$</td>
<td>220/430 - 800 V</td>
<td>220/360 - 800 V</td>
</tr>
<tr>
<td>Eficacia MPP, estática</td>
<td>99,9 %</td>
<td></td>
</tr>
<tr>
<td>Eficacia MPP, dinámica</td>
<td>99,7 %</td>
<td></td>
</tr>
<tr>
<td>$V_{cc,máx}$</td>
<td>1000 V</td>
<td></td>
</tr>
<tr>
<td>$V_{cc, enc}$</td>
<td>250 V</td>
<td></td>
</tr>
</tbody>
</table>
Datos técnicos

Parámetros de la Serie FLX

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>V<sub>ccmín</sub></td>
<td>Tensión CC de apagado</td>
</tr>
<tr>
<td>I<sub>ccmáx</sub></td>
<td>Corriente MPP máx.</td>
</tr>
<tr>
<td>CC de cortocircuito</td>
<td>CC de cortocircuito máx. (en STC)</td>
</tr>
<tr>
<td>Min. en potencia de red</td>
<td></td>
</tr>
<tr>
<td>Eficiencia</td>
<td></td>
</tr>
<tr>
<td>Eficiencia máx.</td>
<td>97.9%</td>
</tr>
<tr>
<td>Eficiencia europea, V<sub>a</sub>, r</td>
<td>97.2%</td>
</tr>
</tbody>
</table>

Otros

Dimensiones (al., an., pr.), inversor / incl. embalaje	667 × 500 × 233 mm / 774 × 570 × 356 mm	
Recomendación de montaje	Placa de montaje	
Peso, inversor / incl. embalaje	38 kg / 44 kg	
Nivel de ruido acústico⁴	55 dB(A)	
Seguidores MPP	2	3
Intervalo de temperatura de funcionamiento	de –25 a 60 ºC	
Intervalo de temperatura nom.	de –25 a 45 ºC	
Temperatura de almacenamiento	de –25 a 60 ºC	
Funcionamiento con sobrecarga	Cambio del punto de funcionamiento	
Categorías de sobretensión	Red: OVC III	
	FV: OVC II	

Tabla 5.2 Especificaciones

1) A tensión de red nominal (V_{ca nom}), Cos(φ)=1.
2) Para utilizar la gama completa, deben considerarse disposiciones asimétricas, incluida la tensión de arranque para al menos 1 cadena. Alcanzar la potencia nominal dependerá de la configuración.
3) A configuración de entrada simétrica.
4) Nivel SPL (nivel de presión acústica) a 1 m en condiciones de funcionamiento normales. Medido a 25 ºC.

Parámetros

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de conector</td>
<td>Sunclix</td>
</tr>
<tr>
<td>Modo paralelo</td>
<td>Sí</td>
</tr>
<tr>
<td>Interfaz</td>
<td>Ethernet (interfaz web), RS-485</td>
</tr>
<tr>
<td>Opciones</td>
<td>Kit opcional GSM, opción Sensor Interface, opción PLA</td>
</tr>
<tr>
<td>PV Sweep</td>
<td>Sí</td>
</tr>
<tr>
<td>Funcionamiento con sobrecarga</td>
<td>Cambio del punto de funcionamiento</td>
</tr>
<tr>
<td>Funcionalidad de respaldo de la red</td>
<td>Fault Ride Through</td>
</tr>
<tr>
<td>Control de la potencia activa<sup>3</sup></td>
<td>Integrado o a través de dispositivo externo</td>
</tr>
<tr>
<td>Control de la potencia reactiva<sup>5</sup></td>
<td>Sí</td>
</tr>
</tbody>
</table>
Datos técnicos

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección frente a cortocircuitos en CC</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Tabla 5.3 Funciones y características del inversor

5) Control remoto mediante un dispositivo externo.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eléctrico</td>
<td></td>
</tr>
<tr>
<td>Seguridad (clase de protección)</td>
<td>Clase I (conexión a tierra)</td>
</tr>
<tr>
<td>PELV en tarjetas de control y comunicaciones</td>
<td>Clase II</td>
</tr>
<tr>
<td>Categorías de sobretensión</td>
<td>Red: OVC III, FV: OVC II</td>
</tr>
<tr>
<td>Funcional</td>
<td></td>
</tr>
<tr>
<td>Detección antísla: pérdida de la red eléctrica</td>
<td>Desconexión, Monitorización trifásica de la red, ROCOF</td>
</tr>
<tr>
<td>Valor de tensión</td>
<td>Desconexión, incluida</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>Desconexión, incluida</td>
</tr>
<tr>
<td>Contenido de CC en la CA</td>
<td>Desconexión, incluida</td>
</tr>
<tr>
<td>Resistencia de aislamiento</td>
<td>Conexión bloqueada, incluida</td>
</tr>
<tr>
<td>RCMU de tipo B</td>
<td>Desconexión, incluida</td>
</tr>
</tbody>
</table>

Tabla 5.4 Especificaciones de seguridad

(Límite = valor nominal + tolerancia).

<table>
<thead>
<tr>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>Corriente de red, por fase</td>
</tr>
<tr>
<td>Potencia de red, total</td>
</tr>
</tbody>
</table>

Tabla 5.5 Límites de reducción de potencia

5.2 Límites de reducción de potencia

Para garantizar que los inversores puedan producir la potencia nominal, las imprecisiones de medición se tienen en cuenta a la hora de cumplir los límites de reducción de potencia indicados en Tabla 5.5.

5.3 Conformidad

<table>
<thead>
<tr>
<th>Estándares internacionales</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directiva LVD</td>
<td>2006/95/EC</td>
</tr>
<tr>
<td>Directiva sobre compatibilidad electromagnética (CEM)</td>
<td>2004/108/EC</td>
</tr>
<tr>
<td>Seguridad</td>
<td>IEC 62109-1 / IEC 62109-2</td>
</tr>
<tr>
<td>Seccionador de corte en carga FV integrado</td>
<td>VDE 0100-712</td>
</tr>
<tr>
<td>Seguridad funcional</td>
<td>IEC 62109-2</td>
</tr>
<tr>
<td>Inmunidad electromagnética (CEM)</td>
<td>EN 61000-6-1</td>
</tr>
<tr>
<td>Emisión electromagnética (CEM)</td>
<td>EN 61000-6-2</td>
</tr>
<tr>
<td>Interferencias de red</td>
<td>EN 61000-3-2/3</td>
</tr>
<tr>
<td>CE</td>
<td>Sí</td>
</tr>
</tbody>
</table>
Tabla 5.6 Cumplimiento de los estándares internacionales

5.4 Condiciones de la instalación

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Especificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>De –25 °C a +60 °C (para reducción de potencia por temperatura, consulte la Guía de diseño de la serie FLX).</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>95 %, sin condensación</td>
</tr>
<tr>
<td>Grado de contaminación</td>
<td>PD2</td>
</tr>
<tr>
<td>Descripción de la clase ambiental IEC</td>
<td>IEC60721-3-3 3X6/3B3/3S3/3M2</td>
</tr>
<tr>
<td>Calidad del aire: general</td>
<td>ISA S71.04-1985</td>
</tr>
<tr>
<td>Calidad del aire: zonas costeras, muy</td>
<td>industrializadas y agrícolas</td>
</tr>
<tr>
<td></td>
<td>Debe ser calculado y clasificado según ISA S71.04-1985</td>
</tr>
<tr>
<td>Vibración</td>
<td>1G</td>
</tr>
<tr>
<td>Tenga en cuenta el grado de</td>
<td>protección del producto</td>
</tr>
<tr>
<td></td>
<td>IP65</td>
</tr>
<tr>
<td>Altitud máxima de funcionamiento</td>
<td>2000 m sobre el nivel del mar.</td>
</tr>
<tr>
<td></td>
<td>La protección PELV es efectiva únicamente hasta 2000 m por encima del nivel del mar.</td>
</tr>
<tr>
<td>Instalación</td>
<td>Evite el flujo constante de agua.</td>
</tr>
<tr>
<td></td>
<td>Evite la luz solar directa.</td>
</tr>
<tr>
<td></td>
<td>Asegúrese de que haya suficiente ventilación.</td>
</tr>
<tr>
<td></td>
<td>Móntelo en una superficie ignífuga.</td>
</tr>
<tr>
<td></td>
<td>Móntelo recto en una superficie vertical.</td>
</tr>
<tr>
<td></td>
<td>Evite la formación de polvo y gases de amoníaco.</td>
</tr>
<tr>
<td></td>
<td>El inversor FLX es una unidad para exteriores.</td>
</tr>
</tbody>
</table>

Tabla 5.7 Condiciones para la instalación

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Condición</th>
<th>Especificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placa de montaje</td>
<td>Diámetro del orificio</td>
<td>30 x 9 mm</td>
</tr>
<tr>
<td></td>
<td>Alineación</td>
<td>Perpendicular ±5º en todos los ángulos</td>
</tr>
</tbody>
</table>

Tabla 5.8 Especificaciones de la placa de montaje

5.4.1 Requisitos de UTE en Francia

AVISO!

En Francia, tenga en cuenta los requisitos de UTE C 15-712-1 y NF C 15-100.

Para la instalación en Francia, coloque la etiqueta de advertencia en la parte delantera del inversor.
5.5 Especificaciones de los cables

AVISO!
Evite la pérdida de potencia en los cables de más de un 1 % del valor nominal del inversor según los valores indicados en las tablas e ilustraciones.

AVISO!
La tabla solo muestra longitudes de cable inferiores a 100 m.

<table>
<thead>
<tr>
<th>Longitud máxima del cable de CA [m]</th>
<th>Tamaño del cable de CA</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 6 7 8 9 10 12,5 15 17</td>
<td></td>
</tr>
<tr>
<td>2,5 mm²</td>
<td>43 m 36 m 31 m 27 m 24 m 21 m</td>
<td>1) 1) 1)</td>
</tr>
<tr>
<td>4 mm²</td>
<td>69 m 57 m 49 m 43 m 38 m 34 m 27 m</td>
<td>2) 2) 2)</td>
</tr>
<tr>
<td>6 mm²</td>
<td>86 m 74 m 64 m 57 m 52 m 41 m 34 m 30 m</td>
<td></td>
</tr>
<tr>
<td>10 mm²</td>
<td>95 m 86 m 69 m 57 m 51 m</td>
<td></td>
</tr>
<tr>
<td>16 mm²</td>
<td>92 m 81 m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de cable de CA</th>
<th>Cable de cobre de 5 hilos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro exterior del cable de CA</td>
<td>18-25 mm</td>
</tr>
<tr>
<td>Aislamiento del cable de CA</td>
<td>Retire 16 mm del aislamiento de los 5 hilos</td>
</tr>
<tr>
<td>Diámetro del cable PE</td>
<td>Igual o mayor que el diámetro de los cables de fase de CA</td>
</tr>
</tbody>
</table>

Tabla 5.9 Especificaciones de los cables de CA

1) No se recomienda utilizar cables con un diámetro inferior a 4 mm².
2) No se recomienda utilizar cables con un diámetro inferior a 6 mm².

<table>
<thead>
<tr>
<th>Especificaciones</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de cable de CC</td>
<td>Min. 1000 V, 13,5 A</td>
</tr>
<tr>
<td>Longitud del cable de CC</td>
<td>Sección del cable de CC de 4 mm² - 4.8 Ω/km</td>
</tr>
<tr>
<td></td>
<td>Tamaño del cable de CC de 6 mm² - 3.4 Ω/km</td>
</tr>
<tr>
<td>Conector de acoplamiento</td>
<td>Sunclix FV-CM-S 2,5-6(+) / FV-CM-S 2,5-6(-)</td>
</tr>
</tbody>
</table>

Tabla 5.10 Especificaciones del cable de CC

* La distancia entre el inversor y el string FV y viceversa, más la longitud acumulada de los cables utilizados para la instalación del string FV.

Tenga en cuenta lo siguiente cuando elija el tipo de cable y su área transversal:

- la temperatura ambiente
- el tipo de disposición (interior, subterránea, exterior, etc.)
- la resistencia a la radiación ultravioleta.
Ilustración 5.2 Serie FLX 5, pérdidas de cable [%] frente a longitud del cable [m]

Ilustración 5.3 Serie FLX 6, pérdidas de cable [%] frente a longitud del cable [m]

Ilustración 5.4 Serie FLX 7, pérdidas de cable [%] frente a longitud del cable [m]

Ilustración 5.5 Serie FLX 8, pérdidas de cable [%] frente a longitud del cable [m]

Ilustración 5.6 Serie FLX 9, pérdidas de cable [%] frente a longitud del cable [m]

Ilustración 5.7 Serie FLX 10, pérdidas de cable [%] frente a longitud del cable [m]
5.6 Especificaciones del par

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Herramienta</th>
<th>Par de apriete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prensaestopas de calibre M16</td>
<td>Llave de 19 mm</td>
<td>3,75 Nm</td>
</tr>
<tr>
<td></td>
<td>Llave de 19 mm, tuerca de compresión</td>
<td>2,5 Nm</td>
</tr>
<tr>
<td>2 Prensaestopas de calibre M25</td>
<td>Llave de 27 mm</td>
<td>7,5 Nm</td>
</tr>
<tr>
<td></td>
<td>Llave de 27 mm, tuerca de compresión</td>
<td>5,0 Nm</td>
</tr>
<tr>
<td>3 Tornillo frontal</td>
<td>Torx TX 20</td>
<td>1,5 Nm</td>
</tr>
</tbody>
</table>

Tabla 5.11 Especificaciones Nm 1
5.7 Especificaciones del circuito de la red eléctrica

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Herramienta</th>
<th>Par de apriete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prensaestopas de calibre M32</td>
<td>Llave de 42 mm</td>
<td>7,5 Nm</td>
</tr>
<tr>
<td>2 Prensaestopas M32, tuerca de compresión</td>
<td>Llave de 42 mm</td>
<td>5,0 Nm</td>
</tr>
<tr>
<td>3 Bornero en la zona de conexión CA</td>
<td>Pozidriv PZ2 o ranura recta 1,0 x 5,5 mm</td>
<td>2,0-4,0 Nm</td>
</tr>
<tr>
<td>4 PE</td>
<td>Torx TX 20 o ranura recta 1,0 x 5,5 mm</td>
<td>2,2 Nm</td>
</tr>
</tbody>
</table>

Tabla 5.12 Especificaciones Nm 2

<table>
<thead>
<tr>
<th>Serie FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12,5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente máxima del inversor, (I_{\text{amáx}})</td>
<td>7,5 A</td>
<td>9 A</td>
<td>10,6 A</td>
<td>12,1 A</td>
<td>13,6 A</td>
<td>15,1 A</td>
<td>18,8 A</td>
<td>22,6 A</td>
<td>25,6 A</td>
</tr>
<tr>
<td>Tipo de fusible gL/gG recomendado (*)</td>
<td>10 A</td>
<td>13 A</td>
<td>13 A</td>
<td>13 A</td>
<td>16 A</td>
<td>16 A</td>
<td>20 A</td>
<td>25 A</td>
<td>32 A</td>
</tr>
<tr>
<td>Tipo de fusible automático recomendado B o C (*)</td>
<td>16 A</td>
<td>16 A</td>
<td>16 A</td>
<td>20 A</td>
<td>20 A</td>
<td>25 A</td>
<td>25 A</td>
<td>32 A</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.13 Especificaciones del circuito de la red eléctrica

(*) Seleccione siempre fusibles que cumplan la normativa local.
5.8 Especificaciones de la interfaz auxiliar

<table>
<thead>
<tr>
<th>Interfaz</th>
<th>Parámetro</th>
<th>Datos de los parámetros</th>
<th>Especificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 y Ethernet</td>
<td>Cable</td>
<td>Diámetro exterior del cable (⌀)</td>
<td>2 × 5-7 mm</td>
</tr>
<tr>
<td></td>
<td>Tipo de cable</td>
<td>Par trenzado apantallado (STP CAT 5e o SFTP CAT 5e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impedancia característica del cable</td>
<td>100-120 Ω</td>
<td></td>
</tr>
<tr>
<td>Conectores RJ-45:</td>
<td>Calibre de cable</td>
<td>24-26 AWG (en función del enchufe metálico de acoplamiento RJ-45)</td>
<td></td>
</tr>
<tr>
<td>2 uds. RJ-45 para RS-485</td>
<td>Terminación de la pantalla del cable</td>
<td>Mediante enchufe metálico RJ-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conexión para aislamiento galvánico</td>
<td>Sí, 500 Vrms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protección frente a contactos directos</td>
<td>Aislamiento doble / reforzado Sí</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protección frente a cortocircuitos</td>
<td>Sí</td>
<td></td>
</tr>
<tr>
<td>solo RS-485</td>
<td>Cable</td>
<td>Longitud de cable máx.</td>
<td>1000 m</td>
</tr>
<tr>
<td></td>
<td>Número máx. de inversores en red</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>solo Ethernet</td>
<td>Comunicación</td>
<td>Topología de red</td>
<td>Conexión en string y estrella</td>
</tr>
<tr>
<td></td>
<td>Cable</td>
<td>Longitud máxima de cableado entre inversores</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Número máx. de inversores</td>
<td></td>
<td>1001)</td>
</tr>
</tbody>
</table>

Tabla 5.14 Especificaciones de la interfaz auxiliar

1) El número máx. de inversores es 100. Si se utiliza un módem GSM para la carga en el portal, el número de inversores en una red se limita a 50.

2) Pasa su uso exterior, se recomienda utilizar un cable de tipo enterrado para exteriores (si se entierra en el suelo) tanto para Ethernet como para RS-485.

5.9 Conexiones RS-485 y Ethernet

RS-485

El bus de comunicación RS-485 debe tener una terminación en los dos extremos.

- La terminación es automática si no se introduce ningún enchufe RJ-45 en el conector. La ausencia de un conector de acoplamiento permite tanto la terminación como la desviación.
- En raras ocasiones, no se desea la desviación, pero se requiere la terminación. Para finalizar el bus RS-485, monte una resistencia de terminación de 100 Ω en un conector de instalación de campo RJ-45. A continuación, introduzca el conector (con la resistencia) en un conector RJ-45 que no se utilice.

La dirección RS-485 del inversor es única y se define en la fábrica.
Ilustración 5.14 Datos del diagrama de pines RJ-45 para RS-485

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GND (tierra)</td>
</tr>
<tr>
<td>2.</td>
<td>GND (tierra)</td>
</tr>
<tr>
<td>3.</td>
<td>RX/TX A (-)</td>
</tr>
<tr>
<td>4.</td>
<td>BIAS L</td>
</tr>
<tr>
<td>5.</td>
<td>BIAS H</td>
</tr>
<tr>
<td>6.</td>
<td>RX/TX B (+)</td>
</tr>
<tr>
<td>7.</td>
<td>Desconectado</td>
</tr>
<tr>
<td>8.</td>
<td>Desconectado</td>
</tr>
</tbody>
</table>

En negrita = obligatorio, el cable de Cat5 contiene los 8 hilos.
Para Ethernet: cruzado automático 10Base-TX y 100Base-TX

Ilustración 5.15 Datos del diagrama de pines RJ-45 para Ethernet

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diagrama de pines para Ethernet</td>
</tr>
<tr>
<td></td>
<td>Colores estándar</td>
</tr>
<tr>
<td>Cat. 5</td>
<td>Cat. 5</td>
</tr>
<tr>
<td>T-568A</td>
<td>T-568B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>RX+</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>RX</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>TX+</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Azul</td>
</tr>
<tr>
<td>5.</td>
<td>Azul / blanco</td>
</tr>
<tr>
<td>6.</td>
<td>TX-</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Marrón / blanco</td>
</tr>
<tr>
<td>8.</td>
<td>Marrón</td>
</tr>
</tbody>
</table>

5.9.1 Topología de red

El inversor tiene dos conectores Ethernet RJ-45 que permiten conectar varios inversores en una topología de línea como alternativa a la topología típica en estrella. Los dos puertos son idénticos y se pueden utilizar indistintamente. Para RS-485, solo se pueden realizar la conexión en string.

AVISO

La topología en anillo no está permitida.
AVISO!

Los dos tipos de red no pueden ser mezclados. Los inversores solo pueden conectarse en RS-485 o en Ethernet.
Sicurezza e conformità

Tipi di messaggio di sicurezza

Nel presente documento vengono utilizzati i seguenti simboli:

PERICOLO
Indica situazioni potenzialmente pericolose che possono essere causa di morte.

AVVISO
Indica situazioni potenzialmente pericolose che possono causare lesioni gravi o mortali.

ATTENZIONE
Indica situazioni potenzialmente pericolose che possono causare lesioni minori o moderate. Può inoltre essere utilizzato per mettere in guardia da pratiche non sicure.

AVVISO!
Indica informazioni importanti, incluse le situazioni che possono danneggiare le attrezzature o la proprietà.

Sicurezza generale

Tutte le persone che si occupano dell’installazione e della manutenzione degli inverter devono essere:

- addestrate ed esperte delle norme generiche di sicurezza per lavorare sulle apparecchiature elettriche;
- a conoscenza dei requisiti, delle regole e dei regolamenti locali per l’installazione.

AVVISO!
Prima dell’installazione
Controllare per individuare l’eventuale presenza di danni all’attrezzatura e all’imballaggio. In caso di dubbio, contattare il fornitore prima di iniziare con l’installazione.

ATTENZIONE
Installazione
Per assicurare un livello di sicurezza ottimale, seguire i passi indicati nel presente documento. Tenere presente che l’inverter è sotto tensione da 2 lati diversi: l’ingresso FV e la rete CA.

AVVISO
Disinserimento dell’inverter
Prima di iniziare a lavorare sull’inverter, disinserire la rete CA tramite l’interruttore di alimentazione e il sistema FV mediante il sezionatore FV. Assicurarsi che il dispositivo non possa essere ricollegato accidentalmente. Usare un voltmetro per assicurarsi che l’unità sia scollegata e priva di tensione. L’inverter può essere ancora caricato con tensioni molto elevate, ossia pericolose, anche quando è scollegato dalla rete CA e dai moduli solari. Dopo aver effettuato lo scollegamento dalla rete di distribuzione e dai pannelli FV, attendere almeno 8 minuti prima di procedere.

Per un disinserimento sicuro della corrente CC, spegnere il sezionatore FV (1).
ATTENZIONE
Manutenzione e modifica
Solo personale autorizzato ha il permesso di modificare l’inverter. Per assicurare la sicurezza del personale, usare solo parti di ricambio originali disponibili presso il fornitore. In caso di utilizzo di parti di ricambio non originali, non si garantisce la piena conformità con le direttive CE relativamente alla sicurezza elettrica, alla sicurezza EMC e alla sicurezza del macchinario.
La temperatura delle griglie di raffreddamento e dei componenti interni dell’inverter può superare i 70 °C. Fare attenzione al rischio di lesioni da ustione.

In un sistema FV sono presenti tensioni CC fino a 1000 V anche quando l’inverter viene scollegato dalla rete CA. Guasti o un uso non corretto possono provocare la formazione di archi elettrici.

AVVISO
I moduli FV generano tensione quando sono esposti alla luce.

AVVISO
Non lavorare sull’inverter mentre si scollega CC e CA.

La corrente di cortocircuito dei pannelli fotovoltaici è solo leggermente superiore alla corrente massima di funzionamento e dipende dai livelli di irradiazione solare.

Conformità
Per maggiori informazioni, andare all’area di download in www.SMA.de, Approvazioni e certificazioni.
Vedere anche 5 Technical Data.
Sommario

1 Introduzione

1.1 Scopo del manuale
1.2 Versione software
1.3 Pezzi di ricambio
1.4 Disimballaggio
1.5 Identificazione dell'inverter
1.6 Sequenza d'installazione
1.7 Restituzione e smaltimento
1.7.1 Restituzione
1.7.2 Smaltimento
1.8 Panoramica dell'area di installazione

2 Installazione

2.1 Ambiente e spazi liberi
2.2 Montaggio della piastra di montaggio
2.3 Montaggio dell'inverter
2.4 Rimozione dell'inverter
2.5 Accesso all'area di installazione
2.6 Connessione alla rete CA
2.7 Collegamenti RS-485 o Ethernet
2.8 Opzioni
2.9 Chiusura
2.10 Collegamento dell'impianto FV
2.10.1 Grado di protezione per moduli FV

3 Setup iniziale e avviamento

3.1 Interfaccia utente
3.1.1 Modo di funzionamento
3.1.2 Livello di sicurezza
3.1.3 Preparazione per l'inverter master
3.1.4 Configurazione FV manuale
3.2 Display
3.2.1 Setup iniziale tramite il display
3.2.2 Attivazione dell'interruttore del carico FV
3.2.3 Avviamento
3.2.4 Procedura di autotest
3.3 Interfaccia web
3.3.1 Preparativi per il setup
3.3.3 Installazione guidata
3.3.4 Interfaccia Web
3.3.5 Viste impianto, gruppo e inverter ... 229
3.3.6 Procedura di autotest .. 230

4 Assistenza .. 231
 4.1 Ricerca guasti ... 231
 4.2 Manutenzione ... 234

5 Dati tecnici ... 235
 5.1 Specifiche ... 235
 5.1.1 Specifiche dell’inverter ... 235
 5.2 Limiti di declassamento ... 239
 5.3 Conformità ... 239
 5.4 Condizioni di installazione .. 240
 5.5 Specifiche dei cavi .. 241
 5.6 Specifiche di coppia ... 243
 5.7 Specifiche della rete di alimentazione .. 244
 5.8 Specifiche interfaccia ausiliaria .. 244
 5.9 RS-485 e collegamenti Ethernet ... 245
1 Introduzione

1.1 Scopo del manuale

La Guida all’installazione fornisce le informazioni richieste per installare e mettere in funzione l’inverter della serie FLX.

Risorse supplementari disponibili:

- Guida dell’utente, per informazioni richieste per il monitoraggio e il setup dell’inverter, tramite il display o l’interfaccia web.
- Guida alla progettazione, per informazioni richieste per pianificare l’uso dell’inverter in diverse applicazioni ad energia solare.
- Guida all’installazione dell’opzione Sensor Interface, per l’installazione e la messa in funzione dell’opzione interfaccia sensore.
- Guida all’installazione del kit opzione GSM, per informazioni richieste per installare un’opzione GSM e impostare il caricamento di dati o la messaggistica dall’inverter.
- Guida opzione PLA, per informazioni richieste per installare e configurare l’opzione PLA per il collegamento del ricevitore radio di controllo delle ondulazioni all’inverter.
- Istruzioni per l’installazione della ventola, per informazioni richieste per sostituire una ventola.

Questi documenti sono disponibili nell’area di download alla voce www.SMA.de, oppure possono essere richiesti al fornitore dell’inverter solare.

La serie di inverter FLX presenta:

- Cassa IP65
- Sezionatore FV
- Connettori Sunclix per l’ingresso FV
- Accesso manuale tramite il display, per la configurazione ed il monitoraggio dell’inverter
- Funzionalità di servizio ausiliari. Fare riferimento alla Guida alla progettazione serie FLX per dettagli.
- Accesso tramite interfaccia web, per la configurazione e il monitoraggio dell’inverter.

1.2 Versione software

Questo manuale è valido per inverter con versione software 2.0 e successive. Per vedere la versione software tramite il display o l’interfaccia web (livello inverter), andare a [Status → Inverter → N. di serie e vers. SW → Inverter].
1.3 Pezzi di ricambio
Contattare SMA Solar Technology AG per informazioni sui pezzi di ricambio, i codici articolo e l’ordinazione.

1.4 Disimballaggio
Contenuti:
- Inverter
- Piastra di montaggio
- Borsa accessori contenente: 3 viti di montaggio, 2 passacavi, 2 ghiere coniche di plastica, 1 vite di messa a terra e 1 etichetta di sicurezza per la Francia.
- Da 4 a 6 parti di accoppiamento Sunclix in funzione del numero di MPPT per FLX Pro 5-17.
- Guida all’installazione, formato opuscolo
- Guida rapida, formato poster

I seguenti elementi non vengono forniti:
- Viti di sicurezza, M5 x 8-12, opzionali (non disponibile come prodotto da SMA Solar Technology AG)

1.5 Identificazione dell’inverter

L’etichetta del prodotto su un lato dell’inverter mostra:
- Tipo di inverter
- Specifiche importanti
- Numero di serie, situato sotto il codice a barre, per l’identificazione dell’inverter.

1.6 Sequenza d’installazione
1. Prestare particolare attenzione a 1.1 Safety Message Types.
2. Installare l’inverter secondo 2.1 Environment and Clearances, 2.2 Mounting the Mounting Plate e 2.3 Mounting the Inverter.
3. Aprire l’inverter secondo 2.5 Access to the Installation Area.
4. Installare CA secondo 2.6 AC Grid Connection.
5. Installare RS-485 o Ethernet, se usato, secondo 2.7 RS-485 or Ethernet Connections.
6. Opzioni di installazione, in base alle guida all’installazione fornita con l’opzione.
7. Chiudere l’inverter secondo 2.5 Access to the Installation Area.
8. Installare FV secondo 2.10 PV Connection.
10. Impostare la lingua, la modalità master, l’ora, la data, la potenza FV installata, il paese e il codice di rete:
 - Per l’impostazione dell’interfaccia web, fare riferimento a 3.3 Web Interface.
 - Per il setup tramite il display, fare riferimento a 3.2 Display.
11. Attivare FV inserendo l’interruttore del carico FV. Fare riferimento a 2.10.1 Connection of PV.
12. Verificare l’installazione confrontandola con il risultato del rilevamento automatico nel display come descritto in 2.10 PV Connection.

Per l’installazione e configurazione di vari inverter FLX Pro nella configurazione master-follower:
- Effettuare i passi 2-9 e 11 per ciascun inverter.
- Effettuare il passo 10 sull’inverter previsto come master.
- Effettuare il passo 12.

1.7 Restituzione e smaltimento
Quando si sostituisce un inverter, può essere restituito al proprio distributore, a SMA Solar Technology AG direttamente, o smaltito secondo le norme locali e nazionali. SMA Solar Technology AG è impegnata a perseguire la propria politica di responsabilità ambientale,
e pertanto si appella ai propri utenti finali che possiedono
inverter affinché seguano le normative ambientali locali e
adottino sistemi di smaltimento responsabili.

1.7.1 Restituzione

Per la restituzione a SMA Solar Technology AG, l'inverter
dovrebbe sempre essere nel suo imballaggio originale o in
una confezione equivalente. Se il prodotto viene restituito
to causa di un guasto dell'inverter, contattare il proprio
fornitore di inverter SMA Solar Technology AG.
Per la spedizione di ritorno e dettagli, contattare l'hotline
SMA Solar Technology AG.

1.7.2 Smaltimento

In caso della fine della vita utile, l'inverter può essere
restituito a SMA Solar Technology AG direttamente o
smaltito nel paese rispettivo. La spedizione al distributore
o a SMA Solar Technology AG viene pagata dal mittente. Il
riciclaggio e lo smaltimento dell'inverter deve essere
effettuato in base a norme e regolamenti applicabili nel
paese in cui viene effettuato lo smaltimento. Tutto il
materiale di imballaggio dell'inverter è riciclabile.
1.8 Panoramica dell’area di installazione

Disegno 1.3 Panoramica dell’area di installazione

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interfaccia RS 485</td>
</tr>
<tr>
<td>2</td>
<td>Slot opzionale A (può essere usato per l’opzione GSM, l’interfaccia sensori opzionale o l’opzione PLA)</td>
</tr>
<tr>
<td>3</td>
<td>Interfaccia Ethernet</td>
</tr>
<tr>
<td>4</td>
<td>Slot opzionale A (può essere usato per l’opzione GSM, l’interfaccia sensori opzionale o l’opzione PLA)</td>
</tr>
</tbody>
</table>

Parte in tensione

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Area di connessione FV</td>
</tr>
<tr>
<td>6</td>
<td>Scheda di comunicazione</td>
</tr>
<tr>
<td>7</td>
<td>Morsetto CA</td>
</tr>
</tbody>
</table>

Altro

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Posizione della vite di sicurezza</td>
</tr>
<tr>
<td>9</td>
<td>Sezionatore FV</td>
</tr>
<tr>
<td>10</td>
<td>Posizione della vite di sicurezza</td>
</tr>
</tbody>
</table>

PELV (può essere toccato)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interfaccia RS 485</td>
</tr>
<tr>
<td>2</td>
<td>Slot opzionale A (può essere usato per l’opzione GSM, l’interfaccia sensori opzionale o l’opzione PLA)</td>
</tr>
<tr>
<td>3</td>
<td>Interfaccia Ethernet</td>
</tr>
<tr>
<td>4</td>
<td>Slot opzionale A (può essere usato per l’opzione GSM, l’interfaccia sensori opzionale o l’opzione PLA)</td>
</tr>
</tbody>
</table>
2 Installazione

2.1 Ambiente e spazi liberi

AVVISO!
Quando si progetta un sito d’installazione, assicurarsi che le etichette del prodotto e le etichette di avvertenza dell’inverter rimangano visibili. Per dettagli, fare riferimento a “Technical Data.”
2.2 Montaggio della piastra di montaggio

AVVISO!
Assicurare 620 mm di spazio libero alla base per un flusso d'aria adeguato.

AVVISO!
L'utilizzo della piastra di montaggio fornita insieme all'inverter è obbligatorio.

Montaggio della piastra di montaggio:

- Montare nell'ambiente definito.
- Utilizzare viti e tasselli a espansione che possano sopportare il peso dell'inverter in condizioni di assoluta sicurezza.
- Assicurarsi che la piastra di montaggio sia allineata correttamente.
- Rispettare le distanze di sicurezza quando si installano uno o più inverter al fine di assicurare un flusso d'aria adeguato. Gli spazi liberi sono specificati in *Disegno 2.8* e sull'etichetta della piastra di montaggio.
- Si raccomanda di montare inverter multipli in una sola fila. Contattare il fornitore per istruzioni su come montare gli inverter in più di una fila.
- Assicurare uno spazio libero adeguato sulla parte anteriore per consentire l'accesso all'inverter in caso di manutenzione.

ATTENZIONE
Per trasportare l'inverter in tutta sicurezza, sono necessarie 2 persone oppure un carrello di trasporto adeguato. Indossare stivali di sicurezza.

Procedura:

2. Sull’inverter, posizionare le viti laterali contro gli slot della piastra di montaggio.

4. Controllare che le 4 viti laterali siano fissate saldamente negli slot della piastra di montaggio.

5. Rilasciare l’inverter.

Protezione antifurto (opzionale)

Per proteggere l’inverter dai furti, fissare nel modo seguente:

1. Usare 2 viti di sicurezza, M5 x 8-12 (non fornite).
2. Inserire le viti attraverso i fori antifurto preforati (vedere Disegno 1.3), attraverso la piastra di montaggio alla parete.
3. Serrare le viti.

2.4 Rimozione dell’inverter

Procedura:

1. Effettuare la rimozione nell’ordine inverso rispetto al montaggio.
3. Afferrando saldamente la base dell’inverter, sollevare e far scivolare l’inverter fuori dagli slot della piastra di montaggio.
4. Sollevare l’inverter e toglierlo dalla piastra di montaggio.

2.5 Accesso all’area di installazione

ATENZIONE

Osservare i regolamenti di sicurezza ESD. Scaricare qualsiasi carica elettrostatica toccando la cassa collegata a massa prima di manipolare qualsiasi componente elettronico.

Procedura:

1. Per aprire il coperchio, allentare le 2 viti anteriori inferiori usando un cacciavite TX 20. Le viti non possono fuoriuscire.
2. Sollevare il coperchio di 180 gradi. Un magnete tiene aperto il coperchio.
3. Per chiudere il coperchio, abbassarlo in posizione e fissare le 2 viti anteriori.
2.6 Connessione alla rete CA

Sul cavo CA, rimuovere la guaina isolante su tutti i 5 conduttori. Il conduttore PE deve essere più lungo dei conduttori di rete e dei fili neutri. Vedere Disegno 2.16.

Disegno 2.14 Allentare le viti anteriori e sollevare il coperchio

Disegno 2.15 Area di installazione

Disegno 2.16 Spelatura del cavo CA

Disegno 2.17 Area di connessione CA

L1, L2, L3	3 cavi di alimentazione
N	Filo neutro
PE1	Terra protettiva primaria
PE2	Terra protettiva secondaria

1. Verificare che i valori nominali dell'inverter corrispondano alla rete di distribuzione.
2. Assicurarsi che l'interruttore principale sia rilasciato e adottare le precauzioni necessarie per impedire la riconnessione.
3. Aprire il coperchio frontale.
4. Inserire il cavo attraverso il passacavo CA fino alla morsettiera.
5. Collegare i 3 cavi di alimentazione (L1, L2, L3), il conduttore neutro (N) e il conduttore di terra di protezione (PE) alla morsettiera con i contrassegni rispettivi.
6. Opzionale: Realizzare un collegamento PE supplementare in corrispondenza dei punti di messa a terra PE secondari.
7. Tutti i conduttori devono essere fissati correttamente con la giusta coppia. Vedere 5.6 Torque Specifications.

ATTENZIONE
Controllare che tutti i cablaggi siano corretti. Collegare un conduttore di fase al terminale del neutro può danneggiare permanentemente l’inverter.

AVVISO:
Stringere a fondo tutte le viti e i passacavi.

AVVISO:
Questo prodotto può generare una corrente CC superiore ai 6 mA conduttore di terra esterno. Dove viene usato un dispositivo di protezione a corrente residua (RCD) o di monitoraggio (RCM) per la protezione nel caso di un contatto diretto o indiretto, sul lato di alimentazione di questo prodotto e consentito solo l’uso di un RCD o RCM di tipo B. Quando si impiega un RCD, deve avere una sensibilità da 300 mA per evitare scatti. I sistemi IT non sono supportati.

AVVISO:
Per informazioni su fusibili e RCD, fare riferimento a 5 Technical Data.

2.7 Collegamenti RS-485 o Ethernet

Prima di collegare i cavi RS-485 o Ethernet, fare riferimento ai requisiti in 5.9 RS-485 and Ethernet Connections.

Procedura:
1. Non rimuovere il connettore RJ-45.
2. Guidare i cavi attraverso la base dell’inverter tramite i passacavi. Vedere Disegno 2.18.
3. Inserire il connettore RS-485 o Ethernet.
4. Fissare i cavi con i fermacavi per assicurare un collegamento durevole nel tempo. Vedere Disegno 2.19.

AVVISO:
Stringere a fondo tutte le viti e i passacavi.

2.8 Opzioni

Per installare le opzioni, fare riferimento alla guida all’installazione opzionale rispettiva.

AVVISO:
Stringere a fondo tutte le viti e i passacavi.
2.9 Chiusura

1. Chiudere il coperchio dell’area di installazione dell’inverter. Fissare le 2 viti anteriori.
2. Accendere l’alimentazione CA.

2.10 Collegamento dell’impianto FV

\[\text{AVVISO}\]
I moduli FV generano tensione quando sono esposti alla luce. NON collegare l’impianto FV a terra.

Disegno 2.20 Non collegare l’impianto FV a terra

Usare un voltmetro adeguato in grado di misurare fino a 1000 V CC.

1. Montare i connettori Sunclix (non forniti) ai cavi FV in funzione di Disegno 2.21.
 - La tensione FV a circuito aperto non deve superare i 1000 V CC. L’inverter è dotato di una protezione da polarità inversa e non genererà potenza finché la polarità è corretta. La polarità inversa non danneggia né l’inverter né i connettori.

Disegno 2.21 Polarità corretta: Montaggio del connettore Sunclix sul cavo

1. Misurare la tensione CC tra il terminale positivo dell’array FV e la terra (o il cavo PE verde/giallo).
 - La tensione misurata dovrebbe essere tendente a zero. Se la tensione è costante e non uguale a zero, c’è un problema di isolamento in qualche punto dell’array FV.
2. Individuare e riparare il guasto prima di proseguire.
3. Ripetere questa procedura per tutti gli array. Una distribuzione non uniforme della potenza di ingresso sugli ingressi FV è consentita, se:
 - L’ingresso individuale non è sovraccarico. Il carico massimo consentito per ingresso è 8000 W.
 - La massima corrente di cortocircuito dei moduli FV alle STC (condizioni di test standard) non deve eccedere 13,5 A per ingresso.
ATTENZIONE
Installazione FV
Gli ingressi FV non devono essere cortocircuitati.

Disegno 2.22 Area di connessione CC

1. Sull'inverter, mettere il sezionatore FV in posizione off.
2. Collegare i cavi FV usando i connettori Sunclix. Assicurarsi che la polarità sia corretta, vedere Disegno 2.21.
 - Fissare la parte corrispondente Sunclix al cavo FV.
 - Collegare a ciascun ingresso FV nell'area di connessione con un 'clic'.

Disegno 2.23 Collegare all'ingresso FV

2.10.1 Grado di protezione per moduli FV
L'inverter deve essere fatto funzionare solo con moduli FV con classe di protezione II conformi all'IEC 61730, classe di applicazione A.
La tensione nominale del modulo deve essere superiore a 480 V (la tensione nominale tipica del modulo è 1000 V). Ciò non impedisce l'uso di stringhe con una tensione di esercizio inferiore.
Collegare solo moduli FV all'inverter. Non sono consentite altre fonti di energia.
3 Setup iniziale e avviamento

3.1 Interfaccia utente

L’interfaccia utente comprende:
- Display locale. Consente il setup manuale dell’inverter.

Scegliere un’interfaccia per configurare ed avviare l’inverter, tramite

- Display
 - 3.2 Display
 - 3.2.1 Initial Setup via Display
- Interfaccia web
 - 3.3 Web Interface
 - 3.3.4 Web Interface

Non toccare l’altra interfaccia durante i processi di setup e di avviamento.

Per informazioni sull’accesso e sul menu, fare riferimento alla Guida dell’utente serie FLX.

3.1.1 Modo di funzionamento

L’inverter dispone di 4 modi di funzionamento indicate dai LED.
Per maggiori informazioni sui LED, fare riferimento alla Guida dell’utente della serie FLX.

Non conn. alla rete (LED spenti)
Se la rete CA non viene alimentata per oltre 10 minuti, l’inverter si scollega dalla rete e si spegne. ‘Non conn. alla rete - standby’ è la modalità notturna di default. ‘Non conn. alla rete - riposo’ è la modalità notturna per la the night mode for lowest energy consumption.

- Non conn. alla rete - modalità standby (LED spenti)
 L’inverter è scollegato dalla rete di distribuzione. Le interfacce utente e di comunicazione rimangono alimentate per scopi di comunicazione.
- Non conn. alla rete - modalità di riposo (LED spenti)
 L’inverter è scollegato dalla rete di distribuzione. La comunicazione utente e le interfacce opzionali vengono spente.

Conness. in corso (LED verde lampeggiante)
L’inverter si avvia quando la tensione di ingresso FV raggiunge 250 V. L’inverter esegue una serie di autotest interni, incluso il rilevamento automatico FV e la misurazione della resistenza tra gli array FV e la terra. Nel frattempo monitora anche i parametri della rete di distribuzione. Quando i parametri della rete di distribuzione rientrano nelle specifiche previste per l’intervallo di tempo predefinito (dipende dal codice di rete), l’inverter inizia ad alimentare la rete.

Connesso alla rete (LED verde acceso)
L’inverter è collegato alla rete di distribuzione e la alimenta. L’inverter si scollega quando:
- rileva condizioni anomale della rete (in funzione del codice di rete) oppure
- si verifica un evento interno oppure
- la potenza FV disponibile è insufficiente (la rete di distribuzione non viene alimentata per 10 minuti).

L’inverter in seguito accede alla modalità di collegamento o alla modalità non connessa alla rete.

A prova di guasto (LED rosso lampeggiante)
Se l’inverter rileva un errore nei propri circuiti durante l’autotest (in modalità di collegamento) o durante il funzionamento, l’inverter passa alla modalità a prova di guasto, scollegandosi dalla rete di distribuzione. L’inverter rimarrà nella modalità di autoprotezione finché la potenza FV sarà mancata per almeno 10 minuti o l’inverter sarà stato arrestato completamente (CA+FV).

3.1.2 Livello di sicurezza

Tre livelli di sicurezza predefiniti filtrano l’accesso utente ai menu e alle opzioni.

Livelli di sicurezza:
- Livello [0]: Accesso generale. Non è richiesta alcuna password.
- Livello [1]: Installatore o tecnico di manutenzione. È richiesto un accesso tramite password.
- Livello [2]: Installatore o tecnico di manutenzione. È richiesto un accesso esteso tramite password.

In tutto il manuale, un simbolo [0], [1] o [2] inserito dopo la voce di menu indica il livello di sicurezza minimo richiesto per l’accesso.
Quando si collega all’interfaccia web in qualità di amministratore, l’accesso avviene con il livello di sicurezza 0.

- Il login di manutenzione permette l’accesso diretto a un livello di sicurezza specifico per la durata della giornata corrente.
- Richiedere l’accesso di servizio da SMA Solar Technology AG.
- Immettere l’accesso tramite il display o la finestra di dialogo dell’interfaccia web per l’accesso.
- Una volta terminata l’operazione di manutenzione, effettuare il logout in [Setup → Sicurezza].
- L’interfaccia scollega l’utente automaticamente dopo 10 minuti di inattività.

I livelli di sicurezza sono simili sul display e sull’interfaccia web. Un livello di sicurezza consente l’accesso a tutti gli elementi del menu allo stesso livello di sicurezza nonché a tutti gli elementi di menu accessibili ai livelli di sicurezza inferiori.

3.1.3 Preparazione per l’inverter master

La modalità master consente di assegnare la funzione master a 1 inverter per la rete dell’inverter. L’inverter master accede agli altri inverter nella rete, consentendo:

- Impostazioni e replicazione dei dati al resto della rete, consentendo una messa in funzione facile e la gestione dei dati.
- Controllo della potenza a livello di impianto (controllo di servizi ausiliari).
- Recupero dei dati dalla rete, per il display grafico sull’interfaccia web, caricamento su una gestione di dati o esportazione a un PC.

Prima di assicurare la modalità master, assicurarsi che siano soddisfatti i seguenti requisiti:

- Non siano presenti altri inverter nella rete.
- Collegamento Ethernet dal PC all’interfaccia RJ-45 dell’inverter usando un cavo patch (cavo di rete cat5e, incrociato o passante). Vedere 2.7 RS-485 or Ethernet Connections.
- Opzione interfaccia sensore, con i sensori installati, quando sono richiesti dati sensore.

- Luogo più vicino al router, in una topologia di rete "daisy chain".

Dopo aver abilitato la modalità master, effettuare una scansione della rete per verificare che tutti gli inverter follower siano collegati all’inverter master. Per iniziare la scansione, andare a [Setup → Dettagli inverter → Modalità master → Rete].

3.1.4 Configurazione FV manuale

Impostare l’inverter per la configurazione FV manuale:

- Tramite il display, livello di sicurezza 1, in [Setup → Dettagli Setup → Configurazione FV].
- Tramite l’interfaccia web, livello di sicurezza 0, al livello [Inverter: Setup → Dettagli setup → Configurazione FV].

Quando l’inverter è impostato su configurazione FV manuale, l’autorilevamento viene escluso susseguentemente.

Per impostare manualmente la configurazione tramite il display:

1. Inserire la rete CA per avviare l’inverter.
3. Premere [Back]. Usare le frecce per navigare a [Setup → Dettagli setup → Configurazione FV].
4. Selezionare la modalità di configurazione FV manuale in: [Setup → Dettagli Setup → Configurazione FV → Modalità: Manuale].
5. Impostare la configurazione di ingresso FV che corrisponde al cablaggio in: [Setup → Dettagli setup → Configurazione FV].

- Ingresso FV 1: Individuale, parallelo o disinserito
- Ingresso FV 2: Individuale, parallelo o disinserito
- Ingresso FV 3: Individuale, parallelo o disinserito

3.2 Display

AVVISO!

Il display si attiva entro 10 secondi dall’accensione.

L’utente ha accesso alle informazioni relative al sistema FV e all’inverter grazie al display integrato nella parte anteriore dell’inverter.
Il display dispone di 2 modalità:

1. **Normale**: il display è in uso.
2. **Risparmio energetico**: Dopo 10 minuti di inattività del display, la retroilluminazione del display si disinnserisce per risparmiare corrente. Riattivare il display premendo un tasto qualsiasi.

Disegno 3.1 Vista generale dei pulsanti del display e relative funzioni

<table>
<thead>
<tr>
<th>Tasto</th>
<th>Funzione</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Vista 1 / Vista 2 - schermo</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Menu di stato</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>Menu Reg. produzione</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>Menu di Configurazione</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>Torna alla schermata Vista</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Invio/Selezione</td>
<td></td>
</tr>
<tr>
<td>Freccia in su</td>
<td>Un passo in su/aumenta il valore</td>
<td></td>
</tr>
<tr>
<td>Freccia in giù</td>
<td>Un passo in giù/ diminuisce il valore</td>
<td></td>
</tr>
<tr>
<td>Freccia a destra</td>
<td>Muove il cursore a destra</td>
<td></td>
</tr>
<tr>
<td>Freccia a sinistra</td>
<td>Muove il cursore a sinistra</td>
<td></td>
</tr>
<tr>
<td>Indietro</td>
<td>Ritorna/deseleziona</td>
<td></td>
</tr>
<tr>
<td>Acceso - LED verde</td>
<td>Acceso/lampeggiante = Connesso alla rete/In connessione</td>
<td></td>
</tr>
<tr>
<td>Allarme - LED rosso</td>
<td>Lampeggiante = a prova di guasto</td>
<td></td>
</tr>
</tbody>
</table>

AVVISO!
Il livello di contrasto del display può essere modificato premendo il tasto freccia su/giù mentre si tiene premuto il tasto F1.

La struttura del menu è suddivisa in 4 sezioni principali:

1. **Vista** - presenta un breve elenco d'informazioni, di sola lettura.
2. **Stato** - mostra le letture relative agli eventi dell'inverter, di sola lettura.
3. **Log** - mostra i dati registrati.
4. **Setup** - mostra i parametri configurabili, lettura/scrittura.

Fare riferimento alle sezioni che seguono per informazioni più dettagliate.

3.2.1 Setup iniziale tramite il display

L'inverter viene fornito con una serie di impostazioni predefinite per diversi reti di distribuzione. Tutti i limiti specifici della rete di distribuzione sono memorizzati nell'inverter e devono essere selezionati in occasione dell'installazione. È sempre possibile visualizzare sul display le limitazioni specifiche della rete di distribuzione selezionata.

Dopo l'installazione, verificare tutti i cavi e chiudere l'inverter.

Attivare la CA dall'interruttore di rete.

L'indirizzo IP può essere trovato nel display durante la messa in funzione.

Quando sul display appare la corrispondente richiesta, selezionare la lingua. Questa impostazione non influisce sui parametri di funzionamento dell'inverter e non implica la selezione di una rete di distribuzione.
Disegno 3.2 Seleziona la lingua

Al primo avviamento la lingua è impostata su inglese. Per cambiare questa impostazione, premere il pulsante [OK]. Premere [*] per scorrere verso il basso le lingue. Selezionare la lingua premendo [OK].

AVVISO!

Per usare la lingua di default (inglese), premere semplicemente due volte il pulsante [OK] per selezionarla e confermare la selezione.

Disegno 3.3 Modalità master

Per abilitare la modalità master, andare al menu **Dettagli inverter** [Setup → Dettagli inverter → Modalità master] e impostare la modalità master su **Abilitato**.

Disegno 3.4 Imposta l’ora

AVVISO!

Impostare accuratamente l’ora e la data. L’inverter usa queste informazioni per la registrazione. Nel caso fosse stata accidentalmente impostata un’ora/data scorretta, correggerla immediatamente dal menu Imposta data e ora [Setup → Dettagli inverter → Imposta data e ora].

Disegno 3.5 Imposta data

Imposta data

Data (g:m:a): 01-01-2008
Quando sul display appare la corrispondente richiesta, impostare la data. Premere [OK] per selezionare. Premere [▼] per scorrere i numeri verso l’alto. Selezionare premendo [OK].

Immettere il valore di potenza FV installata per ciascuno degli ingressi FV. Quando un gruppo di ingressi FV sono collegati in parallelo, immettere la potenza FV media installata per ciascun ingresso FV, come mostrato negli esempi.

Immettere pot. FV inst.

Ingresso FV 1: 8000 W
Ingresso FV 2: 8000 W
Ingresso FV 3: 8000 W
Conferma selez.

Disegno 3.6 Potenza FV installata

Configurazione delle stringhe FV

<table>
<thead>
<tr>
<th>Configurazione delle stringhe FV</th>
<th>Immettere questo valore per “potenza FV installata”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempio 2: FV1 e FV2 vengono impostati sulla modalità parallela e hanno una potenza FV totale di 10 kW installata. FV3 è impostato sulla modalità individuale ed ha una potenza FV nominale di 4 kW.</td>
<td>FV 1: 5000 W FV 2: 5000 W FV 3: 4000 W</td>
</tr>
<tr>
<td>Esempio 3: FV1 e FV2 sono impostati sulla modalità parallela e hanno un totale di potenza FV di 11 kW installati. FV3 è impostato su [Off] e non hanno alcun impianto FV installato.</td>
<td>FV 1: 5500 W FV 2: 5500 W FV 3: 0 W</td>
</tr>
</tbody>
</table>

Tabella 3.2 Esempi di potenza FV installata

Il display ora visualizzera ’Seleziona paese’. Al primo avviamento, il paese è impostato su ‘indef.’. Per selezionare il paese, premere [OK]. Premere [▼] per scorrere l’elenco delle impostazioni verso il basso. Per selezionare l’impostazione desiderata, premere [OK].

Seleziona il paese
Paese: Paese non def.

Disegno 3.7 Seleziona il paese

Selezione impost. rete
Rete: Rete non definita

Disegno 3.8 Selezionare il codice di rete

Il display ora visualizzerà ‘Seleziona codice di rete’. Al primo avviamento, il codice di rete è impostato su ‘indef.’. Per selezionare il codice di rete, premere [OK]. Premere [▼] per scorrere l’elenco verso il basso. Selezionare il codice di rete per l’impianto premendo [OK]. È molto importante selezionare il codice di rete corretto.
Per confermare, selezionare nuovamente il codice di rete e premere [OK]. Adesso le impostazioni per il codice di rete selezionato sono attivate.

AVVISO

La selezione corretta del codice di rete è essenziale per soddisfare gli standard locali e nazionali.

AVVISO

Se i 2 codici di rete selezionati non corrispondono, saranno cancellati e sarà necessario ripetere questo passo. Se la prima volta è stato accidentalmente selezionato un codice di rete scorretto, semplicemente accettare la "Rete: indef." nella schermata di conferma del codice di rete. Ciò cancella la selezione del codice di rete e consente una nuova selezione.

AVVISO

L’accesso al livello di sicurezza 2 è garantito per 5 ore dopo il completamento del setup. Il logout deve essere eseguito prima di abbandonare il sito. Se un codice di rete scorretto viene selezionato due volte, può essere modificato entro 5 ore. È possibile l’accesso a un livello superiore bloccando la configurazione e effettuando nuovamente il login usando una password di 24 ore. Solo al personale autorizzato è consentito configurare l’inverter. Le modifiche verranno registrate e il SMA Solar Technology AG non accetta alcuna responsabilità per danni causati dalla modifica della configurazione dell’inverter.

3.2.2 Attivazione dell’interruttore del carico FV

Disegno 3.10 Attivare l’interruttore del carico FV

3.2.3 Avviamento

L’inverter si avvia automaticamente se è disponibile un’irradiazione solare sufficiente. L’avviamento richiederà alcuni minuti. Durante questo periodo, l’inverter effettua un autotest.

AVVISO

L’inverter è dotato di una protezione da polarità inversa. L’inverter non genera corrente fino alla correzione dell’eventuale polarità inversa.

3.2.4 Procedura di autotest

Per determinati codici di rete, è possibile inizializzare un test automatico dell’inverter attivando la procedura di autotest:

- Tramite il display, andare su [Setup → Autotest] e premere [OK].

3.3 Interfaccia web

Questa istruzioni descrivono l’interfaccia web che facilita l’accesso remoto all’inverter.

Fare riferimento all’area di download in www.SMA.de per le istruzioni più recenti.

Per tutte le voci di testo, il software supporta caratteri compatibili con Unicode.

Per il nome dell’inverter non sono consentiti spazi.

Per il nome dell'impianto, del gruppo e dell'inverter, sono supportati solo i seguenti caratteri:
3.3.1 Preparativi per il setup

Assicurarsi che i seguenti elementi siano pronti prima di iniziare con il setup:

- L’inverter master è designato e preparato, vedere 3.1.3 Preparation for Master Inverter.
- Il collegamento Ethernet dal PC all’inverter è stabilito, vedere anche 2.7 RS-485 or Ethernet Connections.

3.3.2 Setup iniziale tramite l’interfaccia web

ATTENZIONE

Cambiare immediatamente il Web Server login e la password dell’inverter master inverter per una sicurezza ottimale quando ci si collega a Internet. Per cambiare la password, andare su [Setup → Web Server → Admin].

Sequenza di setup

1. Assicurarsi che l’inverter master sia designato e preparato, vedere 3.1.3 Preparation for Master Inverter.
2. Sul PC, attendere finché Windows segnala una connettività limitata (se non è presente alcun DHCP). Aprire il browser Internet ed assicurarsi che i popup siano abilitati.
3. Digitare 1 delle seguenti opzioni nel campo degli indirizzi:
 - Per Windows XP e versioni Windows più vecchie: http://invertername, dove ‘nomeinverter’ sono le ultime 10 cifre del numero di serie.
 - Per Windows 7 e versioni Windows più nuove: http://indirizzo IP. L’indirizzo IP è riportato nel display.

Non è possibile utilizzare la procedura guidata con Windows 7 e 8.
Trovare il numero di serie contrassegnato sull’etichetta del prodotto sul lato della cassa dell’inverter. Vedere Disegno 1.2.

1. Sia apre la finestra di dialogo per l’accesso all’interfaccia web.
2. Digitare ‘admin’ nei campi utente e password, e fare clic su ‘Log in’.
3. In occasione del login iniziale, l’inverter esegue un’installazione guidata.

3.3.3 Installazione guidata

Passo 1 di 8: lingua di visualizzazione
Selezionare la lingua di visualizzazione.

- La lingua predefinita è l’inglese.
AVVISO
Questa selezione definisce la lingua nel display, non il codice di rete.

Install. guida: passo 1 di 8
Selezionare la lingua che deve essere usata dall'inverter

Visualizza lingua: Italiano

Successivo

Disegno 3.11 Passo 1 di 8: lingua di visualizzazione

Per modificare l'impostazione della lingua in un secondo momento, andare a [Setup → Dettagli setup].

Passo 2 di 8: impostazione master
Per impostare un inverter master, fare clic su

- Viene effettuata una scansione per identificare gli inverter nella rete.
- Una finestra a comparsa mostra gli inverter identificati con successo.

Fare clic su [OK] per confermare che è stata trovata la quantità corretta di inverter.

Install. guida: passo 2 di 8
Configurare l'inverter come master se non è ancora presente alcun inverter nella rete

Impostare come master
(inizierà automaticamente una scansione della rete, attendere che si condotta e quindi verificare l'elenco di inverter trovati)

Precedente Successivo

Disegno 3.12 Passo 2 di 8: impostazione master

Per cambiare questa impostazione in un secondo momento, andare su [Livello inverter: Setup → Dettagli inverter].

Passo 3 di 8: ora e data
Immettere:

- orario nel formato a 24 ore
- Data
- Fuso orario

La precisione è importante perché la data e l'ora vengono usati per scopi di registrazione. La regolazione per l'ora legale è automatica.
Inst. guidata: passo 3 di 8

Impostare l’ora e la data dell’inverter

Ora (hh:mm:ss) 11:58:31
Data (aaaa-mm-gg) 2012-11-19
Fuso orario GMT +0

Disegno 3.13 Passo 3 di 8: ora e data

Per modificare queste impostazioni in un secondo momento, andare su [Livello inverter: Setup → Imposta data e ora].

Passo 4 di 8: potenza installata
Per ciascun ingresso FV, immettere la potenza FV installata.

I valori della potenza FV installata vengono usati per calcolare il rapporto di prestazione. Per maggiori informazioni, fare riferimento alla Guida alla progettazione serieFLX.

⚠️ ATTENZIONE

Un’impostazione scorretta può avere gravi conseguenze per l’efficienza produttiva.

Inst. guidata: passo 4 di 8

Configurare il valore della potenza moduli FV installata collegata a ciascuno degli ingressi FV degli inverter

Pot. array FV1 6000 W
Pot. array FV2 6000 W
Pot. array FV3 6000 W

Disegno 3.14 Passo 4 di 8: potenza installata

Per modificare la potenza installata, andare su [Livello inverter: Setup → Calibrazione, FV Array].

Passo 5 di 8: Paese di installazione
Selezionare l'impostazione che corrisponda al luogo dell'installazione.

⚠️ ATTENZIONE
La selezione corretta è essenziale per soddisfare gli standard locali e nazionali.

Installazione guidata: passo 5 di 8
Selezionare l'impostazione paese che deve essere usata dall'inverter

Paese: [Germania]

Disegno 3.15 Passo 5 di 8: Paese di installazione

Passo 6 di 8: Codice di rete
Selezionare il codice di rete che corrisponda al luogo dell'impianto.
- L'impostazione predefinita è [non definito].

Selezionare nuovamente il codice di rete per confermare.
- L'impostazione viene attivata immediatamente.
ATTENZIONE
La selezione corretta è essenziale per soddisfare gli standard locali e nazionali.

Install. guidata: passo 6 di 8

Selezionare la rete specifica che deve essere usata dall'inverter

<table>
<thead>
<tr>
<th>Passo: Germania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rete di distribuzione: Tensione media</td>
</tr>
<tr>
<td>Rete di distribuzione: Tensione media (Riselezionare il codice di rete)</td>
</tr>
</tbody>
</table>

AVVISO:
Se le impostazioni iniziali e di conferma sono diverse,
- la selezione del codice di rete viene cancellata e
- la procedura guidata ricomincia dal passo 5.

Se le impostazioni iniziali e di conferma corrispondono, ma sono scorrette, contattare l'assistenza.

Passo 7 di 8: replica
Questo passo è disponibile per un inverter master con i follower collegati. Per replicare le impostazioni dai passi 1–6 ad altri inverter nella stessa rete:
- Seleziona inverter.
- Fare clic su [Replica].

Disegno 3.16 Passo 6 di 8: Codice di rete

[Precedente] [Successivo]
AVVISO!
Quando la configurazione FV, la potenza FV installata e PV l’area array degli inverter follower nella rete differiscono da quella del master, non replicare. Impostare gli inverter asserviti separatamente.

Install. guidata: passo 7 di 8
Replicare le impostazioni dell’inverter master sui follower selezionati

☐ Tutti Nome
☐ slave Configurato
☑ abc123456 (Master) Configurato
[Replicato]
[Successivo]

Disegno 3.17 Passo 7 di 8: replica

Passo 8 di 8: avviamento dell’inverter
La procedura guidata visualizza una panoramica della configurazione del setup. Fare clic su [Finish] per avviare l’inverter. L’avviamento inizierà quando l’irradiazione solare è sufficiente. La sequenza di avviamento, incluso l’autotest, richiede alcuni minuti.
Ora l'inverter è configurato e pronto per l'uso!

Panoramica della configurazione:
- Lingua: Italiano
- Paese: Germania
- Rete: Tensione media

Ora: 11:07:45
Data: 2012-11-19

Pot. array FV 1: 6000 W
Pot. array FV 2: 6000 W
Pot. array FV 3: 6000 W

Disegno 3.18 Passo 8 di 8: avviamento dell’inverter

Per modificare il setup in un secondo momento, accedere all’inverter tramite l'interfaccia web o il display a livello di inverter.
- Per modificare il nome dell’inverter, andare a [Livello Inverter: Setup → Dettagli inverter].
- Per abilitare la modalità master, andare a [Livello inverter: Setup → Dettagli inverter].
3.3.4 Interfaccia Web

La panoramica dell’interfaccia web è strutturata come segue.

1. **Nome dell’impianto**: Visualizza il nome corrente dell’impianto:
 - Fare clic sul nome dell’impianto per visualizzare la vista dell’impianto.
 - Modificare il nome dell’impianto in [Setup → Dettagli impianto].

2. **Menu gruppi**: Visualizza i gruppi di inverter:
 - Gli inverter per default fanno parte del gruppo 1.
 - Fare clic su un nome del gruppo per visualizzare la vista del gruppo e un elenco di inverter nel gruppo.
 - Modificare il nome del gruppo tramite [Setup → Dettagli inverter] nella vista inverter.

3. **Membri del gruppo**: Visualizza i nomi degli inverter attualmente selezionati nel gruppo. Il nome di default dell’inverter si basa sul numero di serie.
 - Fare clic sul nome dell’inverter per visualizzare la vista dell’inverter.
 - Modificare il nome dell’inverter tramite [Setup → Dettagli inverter] nella vista inverter.

4. **Menu principale**: Questo menu corrisponde al menu principale nel display dell’inverter.

5. **Sottomenu**: Il sottomenu corrisponde alla voce del menu principale attualmente selezionato. Qui sono visualizzati tutti gli elementi del sottomenu facenti parte di un particolare elemento del menu principale.

6. **Area dei contenuti**: Il menu principale e i sottomenu dell’interfaccia web sono identici ai menu nel display dell’inverter. Il contenuto del sottomenu visualizzato qui corrisponde al sottomenu selezionato: [Sommario]. In alcune pagine è presente un menu orizzontale per consentire una migliore leggibilità.

7. **Piè di pagina**: opzioni nella barra a piè di pagina:
3.3.5 Viste impianto, gruppo e inverter

Le schermate panoramicche per la vista dell'impianto, la vista del gruppo e la vista dell'inverter, visualizzano tutte la stessa informazione di stato generale.

![Diagramma di stato dell'impianto generale](image)

AVVISO:
Il contenuto delle modifiche al menu principale in funzione della vista attualmente selezionata: l'impianto, un gruppo di inverter o un singolo inverter.
Tabella 3.3 Informazioni visualizzate nella vista impianto, schermata panoramica

AVVISO!

Per calcolare il rapporto di prestazione PR è richiesto un sensore di irradiazione, vedi [Setup → Calibrazione].

3.3.6 Procedura di autotest

Per determinati codici di rete, è possibile inizializzare un test automatico dell’inverter attivando la procedura di autotest:

- Tramite l’interfaccia web, andare su [Livello inverter: Setup → Dettagli setup → Autotest] e fare clic su [Avvio → Test].
4 Assistenza

4.1 Ricerca guasti

Questa guida fornisce tabelle che mostrano messaggi che appaiono sul display dell’inverter, noti come eventi. La tabella contiene descrizioni nonché le azioni da intraprendere al verificarsi di un evento. Per l’intero elenco degli eventi, fare riferimento alla Guida dell’utente serie FLX.

Per visualizzare gli eventi, andare al menu Registro e accedere al menu Registro eventi. Qui viene visualizzato l’ultimo evento registrato dall’inverter nonché un elenco degli ultimi 20 eventi. Quando l’inverter passa alla modalità Connesso alla rete, evento più recente viene azzerato e il valore visualizzato è 0.

Il codice evento è costituito da due elementi: il classificatore di gruppo e l’ID evento. Il classificatore di gruppo descrive il tipo generico di evento, mentre l’ID evento viene utilizzato per identificare l’evento specifico.

Tabella 4.1 è una panoramica che mostra la struttura delle tabelle degli eventi inverter e spiega come usarle.

<p>| Tipo evento | Indica se l’evento è relativo alla rete di distribuzione, al sistema FV, a problemi interni o di autoprotezione |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Messaggio di stato</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Tpower_high</td>
<td>La temperatura interna dell’inverter è troppo alta.</td>
<td>Controllare che l’inverter non sia coperto e che il condotto di ventilazione non sia bloccato. In caso contrario, chiamare l’installatore.</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabella 4.1 Come leggere le tabelle degli eventi

<p>| Tipo evento | Indica se l’evento è relativo alla rete di distribuzione, al sistema FV, a problemi interni o di autoprotezione |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Messaggio di stato</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–6</td>
<td>Tensione di rete troppo bassa.</td>
<td>Controllare che la tensione di fase della rete sia corretta.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7–9</td>
<td>Media della tensione di rete troppo elevata per 10 minuti.</td>
<td>Chiamare l’installatore ed informarlo sulla tensione media della rete.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10–15</td>
<td>Tensione di rete troppo elevata.</td>
<td>Controllare che l’installazione sia corretta in base alla guida media secondo la sezione Sicurezza funzionale.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16–18</td>
<td>L’inverter ha rilevato un picco di tensione sulla rete di distribuzione.</td>
<td>Chiamare l’installatore ed informarlo sulla tensione di fase della rete.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19–24</td>
<td>Frequenza di rete troppo bassa o troppo elevata.</td>
<td>Chiamare l’installatore ed informarlo sulla frequenza di rete.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Assistenza

<table>
<thead>
<tr>
<th>ID</th>
<th>Messaggio di stato</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–27</td>
<td>Perdita di rete, tensioni da fase a fase troppo basse.</td>
<td>Chiamare l'installatore ed informarlo sulla tensione presente su tutte e tre le fasi. Controllare le tensioni da fase a fase e l'installazione CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28–30</td>
<td>Perdita della rete, ROCOF fuori campo.</td>
<td>Se l'evento si ripete varie volte al giorno, contattare il DNO.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31–33</td>
<td>Corrente di rete CC troppo alta.</td>
<td>Se l'evento si verifica più volte al giorno, contattare l'installatore.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34–37</td>
<td>L'unità di monitoraggio a corrente residua (RCMU) ha misurato una corrente eccessiva.</td>
<td>Disinserire sia CC che CA e attendere che si spegna il display. Quindi inserire CC e CA ed osservare se l'evento si ripete. Se l'evento si ripete, chiamare l'installatore. Installatore: Ispezione visiva di tutti i cavi e moduli FV.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Rete CA non ok</td>
<td>Chiamare l'installatore ed informarlo sulla frequenza, sulla versione SW e sul codice di rete. Installatore: Verificare l'installazione CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>41–43</td>
<td>L'inverter ha rilevato che la tensione di rete era inferiore a un certo livello.</td>
<td>Se questo evento viene segnalato più volte ogni giorno, contattare l'installatore. Installatore: Effettuare un'analisi della rete di distribuzione sul posto.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PLA inferiore alla soglia</td>
<td>Contattare il DNO e ottenere lo stato della riduzione della potenza attiva (PLA).</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>48–53</td>
<td>Frequenza di rete troppo bassa o troppo elevata</td>
<td>Chiamare l'installatore ed informarlo sulla frequenza di rete. Verificare l'installazione CA.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54–56</td>
<td>Corrente di rete CC troppo elevata (fase 2).</td>
<td>Se l'evento si verifica più volte al giorno, contattare l'installatore. Installatore: Effettuare un'analisi della rete di distribuzione sul posto.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Rilevato un evento di rete; l'inverter è stato arrestato dal circuito di sicurezza ridondante.</td>
<td>Rilevato un evento di rete; l'inverter è stato arrestato dal circuito di sicurezza ridondante. Controllare il registro eventi. Se la maggior parte delle voci sono del tipo 246, chiamare il reparto di manutenzione. In caso contrario, attendere 24 ore e ricon trollare.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 4.2 Eventi relativi alla rete di distribuzione

Eventi relativi al sistema FV

<table>
<thead>
<tr>
<th>ID</th>
<th>Messaggio di stato</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–102</td>
<td>FV negativo</td>
<td>La corrente di ingresso è negativa, polarità scorretta.</td>
<td>Chiamare l'installatore. Installatore: Controllare la polarità. Se è corretta, chiamare l'assistenza.</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>103–105</td>
<td>La corrente FV è troppo alta / in attesa.</td>
<td>Troppi moduli FV collegati in parallelo. Dovrebbe apparire soltanto su impianti appena installati.</td>
<td>Chiamare l'installatore. Installatore: Controllare il numero di stringhe in parallelo e i range di corrente. È stato superato il limite di corrente? L'inverter è stato degradato con la corrente FV? Ricollegare le stringhe in parallelo, eventualmente installare un secondo inverter.</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

4
232
L00410568-03_2q / Rev. date: 2014-06-20
Tabella 4.3 Eventi relativi al sistema FV

Eventi interni

<table>
<thead>
<tr>
<th>ID</th>
<th>Messaggio di stato</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>201–208</td>
<td>La temperatura interna dell’inverter è troppo alta.</td>
<td>Controllare che l’inverter non sia coperto e che il condotto di ventilazione non sia bloccato. In caso contrario, chiamare l’installatore.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>209, 210</td>
<td>La tensione sul bus CC è troppo elevata.</td>
<td>Resetterr l’inverter scollegando CC e CA usando i connettori. Se l’evento si ripete, chiamare l’installatore. Installatore: Controllare la tensione massima FV tramite il display per verificare se è superiore ai limiti.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Numero di giri ventola troppo basso.</td>
<td>La velocità della ventola è troppo bassa. La ventola dell’inverter è bloccata? Sì: pulire la ventola, No: Chiamare l’installatore.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Timeout equilibrio bus CC</td>
<td>Inverter incapable di bilanciare il bus CC. Chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>213–215</td>
<td>Errore interno. La tensione misurata a monte e a valle del relè differisce di oltre 20 V.</td>
<td>Chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>216–221</td>
<td>La corrente misurata sul lato CA è troppo elevata.</td>
<td>Chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>RCMU fuori campo</td>
<td>Un conduttore nella RCMU è rotto. Chiamare l’installatore. Installatore: Se l’autotest non viene portato a termine con successo, chiamare il Service Partner.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>225–240</td>
<td>Guasto nella memoria/EEPROM.</td>
<td>Riavviare l’inverter. Se l’evento persiste, chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>241, 242, 249</td>
<td>Errore di comunicazione interno.</td>
<td>Chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>243, 244</td>
<td>Errore interno.</td>
<td>Chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>Errore di verosimiglianza FSP</td>
<td>Un errore di verosimiglianza è avvenuto nel processore di sicurezza funzionale. Controllare la presenza di altri eventi nella rete nel registro eventi (1-35) e seguire le istruzioni per questi eventi. Se l’evento si verifica frequentemente, contattare l’installatore.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>248, 251</td>
<td>Autotest fallito FSP a prova di guasto</td>
<td>L’autotest è fallito.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>252-254</td>
<td>La corrente misurata sul lato CA è troppo elevata.</td>
<td>Chiamare l’installatore. Installatore: Chiamare l’assistenza.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Tabella 4.4 Eventi interni

<table>
<thead>
<tr>
<th>ID</th>
<th>Messaggio di stato</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-257</td>
<td>Scatto di protezione islanding.</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>La resistenza tra la massa e FV è troppo bassa per l'avviamento dell'inverter. In questo caso l'inverter eseguirà una nuova misura trascorsi 10 minuti.</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261-262</td>
<td>Misurazioni della corrente FV fallite.</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 4.5 Eventi causati dall'autotest

<table>
<thead>
<tr>
<th>ID</th>
<th>Descrizione</th>
<th>Azione</th>
<th>DNO</th>
<th>Hotline</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-271</td>
<td>Test del circuito di misura fallito.</td>
<td>Riavviiare l'inverter. Se l'evento persiste, chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Autotest RCMU fallito.</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>Test sensore di corrente fallito.</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-363</td>
<td>Il test del transistor e dei relè è fallito oppure si è guastato il relè dell'inverter (con la premessa che il contatto fosse saldato).</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>Il collegamento neutro è danneggiato o mancante.</td>
<td>Chiamare l'installatore. Installatore: Controllare l'impianto CA per guasti nel collegamento neutro. Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>File di terra guasto.</td>
<td>Chiamare l'installatore. Installatore: Chiamare l'assistenza.</td>
<td>- x -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Manutenzione

Di norma gli inverter non richiedono manutenzione o taratura.

Assicurarsi che il dissipatore di calore sul lato posteriore dell'inverter non sia coperto.

Pulire i contatti del sezionatore FV una volta all'anno. Pulire commutando l'interruttore sulle posizioni on e off per 10 volte. Il sezionatore FV è collocato alla base dell'inverter.

Per un funzionamento corretto e una lunga durata in servizio, assicurare una libera circolazione dell'aria

- intorno al dissipatore di calore sul lato superiore e ai lati dell'inverter in cui l'aria viene espulsa e
- verso la ventola alla base dell'inverter.

Per togliere le ostruzioni, pulire usando aria compressa, un panno morbido oppure una spazzola.

AVVISO

La temperatura del dissipatore di calore può superare i 70 °C.
5 Dati tecnici

5.1 Specifiche

5.1.1 Specifiche dell’inverter

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[S]</td>
<td>Potenza apparente nominale</td>
</tr>
<tr>
<td></td>
<td>P_{ac}</td>
<td>Potenza attiva nominale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potenza attiva con $\cos(\phi) = 0,95$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potenza attiva con $\cos(\phi) = 0,90$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervallo potenza reattiva</td>
</tr>
<tr>
<td></td>
<td>$V_{ac,r}$</td>
<td>Tensione CA nominale (intervallo di tensione CA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrente CA nominale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrente max. CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distorsione di corrente CA (THD alla potenza di uscita nominale,%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transitorno di accensione</td>
</tr>
<tr>
<td></td>
<td>$\cos(\phi)_{ac,r}$</td>
<td>Fattore di potenza con un carico del 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervallo fattore di potenza controllato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumo in standby</td>
</tr>
<tr>
<td></td>
<td>f_{r}</td>
<td>Frequenza di rete nominale (intervallo)</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>Massima potenza di ingresso FV per MPPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potenza nominale CC</td>
</tr>
<tr>
<td></td>
<td>$V_{dc,r}$</td>
<td>Tensione nominale CC</td>
</tr>
</tbody>
</table>
Nomenclatura

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{dc,mn}$ / $V_{mp,min}$ - $V_{mp,max}$</td>
<td>220/250 - 800 V / 220/345 - 800 V / 220/390 - 800 V</td>
</tr>
<tr>
<td>Efficienza MPP, statica</td>
<td>99.9%</td>
</tr>
<tr>
<td>Efficienza MPPT, dinamica</td>
<td>99.7%</td>
</tr>
<tr>
<td>$V_{dc,max}$</td>
<td>1000 V</td>
</tr>
<tr>
<td>$V_{dc, start}$</td>
<td>250 V</td>
</tr>
<tr>
<td>$V_{dc, min}$</td>
<td>220 V</td>
</tr>
<tr>
<td>$I_{dc, max}$</td>
<td>12 A per ingresso FV</td>
</tr>
<tr>
<td>Max. corrente di cortocircuito CC alle condizioni di prova normalizzate (STC)</td>
<td>13.5 A per ingresso FV</td>
</tr>
<tr>
<td>Potenza minima in connessione alla rete di distribuzione</td>
<td>20 W</td>
</tr>
<tr>
<td>Efficienza</td>
<td>97.9%</td>
</tr>
<tr>
<td>Efficienza europea, V con α_{dc}</td>
<td>96.1% / 96.4% / 97.1% / 97.2%</td>
</tr>
</tbody>
</table>

Altro

Dimensioni (A, L, P), inverter / incl. imballaggio	667 x 500 x 233 mm / 774 x 570 x 356 mm
Raccomandazioni per il montaggio	Piastra di montaggio
Peso, inverter / incl. imballaggio	38 kg / 44 kg
Livello di rumore acustico	-
Inseguitori MPP	2
Intervallo di temperatura operativa	-25.60 °C
Intervallo di temperatura nom.	-25.45 °C
Temperatura di immagazzinamento	-25.60 °C
Funzionamento con sovraccarico	Cambio del punto di funzionamento
Categorie di sovratensione	Reale di distribuzione: OVC III / FV: OVC II

Tabella 5.1 Specifiche

1) Alla tensione di rete nominale ($V_{ac, r}$), $\cos(\phi)$=1.
2) Per utilizzare l'intero intervallo, devono essere prese in considerazione configurazioni asimmetriche inclusa la tensione di avviamento per almeno 1 stringa. L'ottenimento della potenza nominale dipenderà dalla configurazione.
3) Con configurazione simmetrica dell'ingresso.
Dati tecnici

4) SPL (livello di pressione sonora) a 1 m in condizioni di funzionamento normali. Misurata a 25 °C.

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{ac,r}</td>
<td>Potenza apparente nominale</td>
<td>10 kVA 12,5 kVA 15 kVA 17 kVA</td>
</tr>
<tr>
<td></td>
<td>Potenza attiva nominale</td>
<td>10 kW 12,5 kW 15 kW 17 kW</td>
</tr>
<tr>
<td></td>
<td>Potenza attiva con cos(\phi) = 0,95</td>
<td>9,5 kW 11,9 kW 14,3 kW 16,2 kW</td>
</tr>
<tr>
<td></td>
<td>Potenza attiva con cos(\phi) = 0,90</td>
<td>9,0 kW 11,3 kW 13,5 kW 15,3 kW</td>
</tr>
<tr>
<td></td>
<td>Intervallo potenza reattiva</td>
<td>0 - 6,0 kVAr 0 - 7,5 kVAr 0 - 9,0 kVAr 0 - 10,2 kVAr</td>
</tr>
<tr>
<td>V_{ac,r}</td>
<td>Tensione CA nominale (intervallo di tensione CA)</td>
<td>3P+N+PE - 230/400 V (+/- 20%)</td>
</tr>
<tr>
<td></td>
<td>Corrente CA nominale</td>
<td>3 x 14,5 A 3 x 18,2 A 3 x 21,7 A 3 x 24,7 A</td>
</tr>
<tr>
<td></td>
<td>Corrente max. CA</td>
<td>3 x 15,1 A 3 x 18,8 A 3 x 22,6 A 3 x 25,6 A</td>
</tr>
<tr>
<td></td>
<td>Distorsione di corrente CA (THD alla potenza di uscita nominale, %)</td>
<td>- <2 %</td>
</tr>
<tr>
<td></td>
<td>Transitorio di accensione</td>
<td>0,5 A/10 ms</td>
</tr>
<tr>
<td></td>
<td>cosphi_{ac,r}</td>
<td>Fattore di potenza con un carico del 100%</td>
</tr>
<tr>
<td></td>
<td>Intervallo fattore di potenza controllato</td>
<td>0,8 sovraeccitato 0,8 sottoeccitato</td>
</tr>
<tr>
<td></td>
<td>Consumo in standby</td>
<td>2,7 W</td>
</tr>
<tr>
<td>f_r</td>
<td>Frequenza di rete nominale (intervallo)</td>
<td>50 (±5 Hz)</td>
</tr>
<tr>
<td>CC</td>
<td>Massima potenza di ingresso FV per MPPT</td>
<td>8 kW</td>
</tr>
<tr>
<td></td>
<td>Potenza nominale CC</td>
<td>10,4 kW 12,9 kW 15,5 kW 17,6 kW</td>
</tr>
<tr>
<td>V_{dc,r}</td>
<td>Tensione nominale CC</td>
<td>715 V</td>
</tr>
<tr>
<td>V_{dc,min}/V_{dc,max}</td>
<td>Tensione MPP - inseguimento attivo</td>
<td>220/430 - 800 V 220/360 - 800 V 220/430 - 800 V 220/485 - 800 V</td>
</tr>
<tr>
<td>Efficienza MPP, statica</td>
<td>99,9%</td>
<td></td>
</tr>
<tr>
<td>Efficienza MPPT, dinamica</td>
<td>99,7%</td>
<td></td>
</tr>
</tbody>
</table>
Dati tecnici

Parametro Serie FLX

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>V_dcmax</td>
<td>Tensione max. CC</td>
<td>1000 V</td>
</tr>
<tr>
<td>V_start</td>
<td>Tensione CC di accensione</td>
<td>250 V</td>
</tr>
<tr>
<td>V_dcmin</td>
<td>Tensione CC di spegnimento</td>
<td>220 V</td>
</tr>
<tr>
<td>I_dcmax</td>
<td>Max. corrente MPP</td>
<td>12 A per ingresso FV</td>
</tr>
<tr>
<td></td>
<td>Max. corrente di cortocircuito CC alle condizioni di prova normalizzate (STC)</td>
<td>13,5 A per ingresso FV</td>
</tr>
<tr>
<td></td>
<td>Potenza minima in connessione alla rete di distribuzione</td>
<td>20 W</td>
</tr>
<tr>
<td></td>
<td>Efficienza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficienza max.</td>
<td>97.9%</td>
</tr>
<tr>
<td></td>
<td>Efficienza europea, V con a_{dc}</td>
<td>97.2%</td>
</tr>
<tr>
<td>Altre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensioni (A, L, P), inverter / incl. imballaggio</td>
<td>667 x 500 x 233 mm / 774 x 570 x 356 mm</td>
</tr>
<tr>
<td></td>
<td>Raccomandazioni per il montaggio</td>
<td>Piastra di montaggio</td>
</tr>
<tr>
<td></td>
<td>Peso, inverter / incl. imballaggio</td>
<td>38 kg / 44 kg</td>
</tr>
<tr>
<td></td>
<td>Livello di rumore acustico</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Inseguitori MPP</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intervallo di temperatura operativa</td>
<td>-25..60 °C</td>
</tr>
<tr>
<td></td>
<td>Intervallo di temperatura nom.</td>
<td>-25..45 °C</td>
</tr>
<tr>
<td></td>
<td>Temperatura di immagazzinamento</td>
<td>-25..60 °C</td>
</tr>
<tr>
<td></td>
<td>Funzionamento con sovraccarico</td>
<td>Cambio del punto di funzionamento</td>
</tr>
<tr>
<td></td>
<td>Categorie di sovratensione</td>
<td>Rete di distribuzione: OVC III FV: OVC II</td>
</tr>
</tbody>
</table>

Tabella 5.2 Specifiche

1. Alla tensione di rete nominale ($V_{ac,n}$), $\cos(\phi)$=1.
2. Per utilizzare l’intervallo, devono essere presenti configurazioni asimmetriche incluse la tensione di avviamento per almeno 1 stringa. L’ottenimento della potenza nominale dipenderà dalla configurazione.
3. Con configurazione simmetrica dell’ingresso.
4. SPL (livello di pressione sonora) a 1 m in condizioni di funzionamento normali. Misurata a 25 °C.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di connettore</td>
<td>Sunclix</td>
</tr>
<tr>
<td>Modalità parallela</td>
<td>Sì</td>
</tr>
<tr>
<td>Interfaccia</td>
<td>Ethernet (interfaccia web), RS-485</td>
</tr>
</tbody>
</table>
Dati tecnici

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opzioni</td>
<td>Kit GSM opzionale, interfaccia sensori opzionale, opzione PLA</td>
</tr>
<tr>
<td>Scansione FV</td>
<td></td>
</tr>
<tr>
<td>Funzionamento con sovraccarico</td>
<td>Cambio del punto di funzionamento</td>
</tr>
<tr>
<td>Funzionalità di supporto della rete di distribuzione</td>
<td>Insensibilità alle perturbazioni di rete</td>
</tr>
<tr>
<td>Controllo potenza attiva⁵)</td>
<td>Integrato o tramite dispositivo esterno</td>
</tr>
<tr>
<td>Controllo della potenza reattiva⁵)</td>
<td>Si</td>
</tr>
<tr>
<td>Protezione da cortocircuito CC</td>
<td>Si</td>
</tr>
</tbody>
</table>

Tabella 5.3 Caratteristiche inverter e funzionalità

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Serie FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elettrico</td>
<td></td>
</tr>
<tr>
<td>Sicurezza (classe di protezione)</td>
<td>Classe I (messa a terra)</td>
</tr>
<tr>
<td>PELV sulla scheda di comunicazione e di controllo</td>
<td>Classe II</td>
</tr>
<tr>
<td>Categorie di sovratensione</td>
<td>Rete di distribuzione: OVC III</td>
</tr>
<tr>
<td></td>
<td>FV: OVC II</td>
</tr>
<tr>
<td>Funzionale</td>
<td></td>
</tr>
<tr>
<td>Rilevamento islanding - perdita di rete di alimentazione</td>
<td>Scollegamento</td>
</tr>
<tr>
<td></td>
<td>Monitoraggio trifase</td>
</tr>
<tr>
<td></td>
<td>ROCOF</td>
</tr>
<tr>
<td>Ampiezza tensione</td>
<td>Scollegamento, incluso</td>
</tr>
<tr>
<td>Frequenza</td>
<td>Scollegamento, incluso</td>
</tr>
<tr>
<td>Contenuto di corrente continua presente nella corrente alternata</td>
<td>Scollegamento, incluso</td>
</tr>
<tr>
<td>Resistenza di isolamento</td>
<td>Collegamento impedito, incluso</td>
</tr>
<tr>
<td>RCMU - Tipo B</td>
<td>Scollegamento, incluso</td>
</tr>
</tbody>
</table>

Tabella 5.4 Specifiche di sicurezza

(Limite = valore nominale + tolleranza).

<table>
<thead>
<tr>
<th>Serie FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrente di rete, per fase</td>
<td>7.5 A</td>
<td>9.0 A</td>
<td>10.6 A</td>
<td>12.1 A</td>
<td>13.6 A</td>
<td>15.1 A</td>
<td>18.8 A</td>
<td>22.6 A</td>
<td>25.6 A</td>
</tr>
<tr>
<td>Potenza di rete, totale</td>
<td>5150 W</td>
<td>6180 W</td>
<td>7210 W</td>
<td>8240 W</td>
<td>9270 W</td>
<td>10300 W</td>
<td>12875 W</td>
<td>15450 W</td>
<td>17510 W</td>
</tr>
</tbody>
</table>

Tabella 5.5 Limiti di declasamento

5.2 Limiti di declasamento

Per assicurare che gli inverter possano produrre la potenza nominale, viene tenuto conto delle imprecisioni di misura quando si applicano i limiti di declasamento indicati in Tabella 5.5.

5.3 Conformità

<table>
<thead>
<tr>
<th>Serie FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
</table>
Tabella 5.6 Conformità alle norme internazionali

5.4 Condizioni di installazione

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Specifiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>~da 25 °C a +60 °C (per il declassamento di temperatura, vedere la Guida alla progettazione serie FLX)</td>
</tr>
<tr>
<td>Umidità relativa</td>
<td>95% (senza condensa)</td>
</tr>
<tr>
<td>Grado di inquinamento</td>
<td>PD2</td>
</tr>
</tbody>
</table>
| Descrizione della classe ambientale secondo l’IEC | IEC60721-3-3
| | 3K6/3B3/3S3/3M2 |
| Qualità dell’aria - generale | ISA S71.04-1985 |
| | Livello G2 (con 75% RH) |
| Qualità dell’aria - zone costiere, fortemente industrializzate e agricole | Deve essere misurato e classificato sec. ISA S71.04-1985 |
| Vibrazione | 1G |
| Osservare la classe di protezione del prodotto in ingresso | IP65 |
| Max. altitudine di funzionamento | 2000 m sopra il livello del mare.
| | La protezione PELV è efficace soltanto fino a 2000 m sopra il livello del mare. |
| Installazione | Evitare flussi d’acqua costanti. |
| | Evitare la luce solare diretta. |
| | Assicurare una ventilazione adeguata. |
| | Montare su una superficie non infiammabile. |
| | Montare in posizione eretta su una superficie verticale. |
| | Prevenire la formazione di polvere e di gas di ammoniaca. |
| | L’inverter FLX è un’unità da esterno. |

Tabella 5.7 Condizioni per l’installazione

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Condizione</th>
<th>Specifiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piastra di montaggio</td>
<td>Diametro foro</td>
<td>30 x 9 mm</td>
</tr>
<tr>
<td></td>
<td>Allineamento</td>
<td>Perpendicolare ±5° tutti angoli</td>
</tr>
</tbody>
</table>

Tabella 5.8 Specifiche della piastra di montaggio

5.4.1 Requisiti UTE Francia

AVVISO!

In Francia, osservare i requisiti UTE C 15-712-1 e NF C 15-100.

Per l’installazione in Francia, applicare un cartello di avviso sulla parte anteriore dell’inverter.
5.5 Specifiche dei cavi

AVVISO!
Evitare perdite di potenza nei cavi superiori all’1% della potenza nominale dell’inverter seguendo i valori indicati nelle tabelle e illustrazioni.

AVVISO!
La tabella indica solo lunghezze di cavi inferiori ai 100 m.

<table>
<thead>
<tr>
<th>Specifiche di serie FLX</th>
<th>Lunghezza massima cavo CA [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimensione del cavo CA</td>
</tr>
<tr>
<td></td>
<td>5 6 7 8 9 10 12,5 15 17</td>
</tr>
<tr>
<td></td>
<td>2,5 mm² 43 m 36 m 31 m 27 m 24 m 21 m 1) 1) 1)</td>
</tr>
<tr>
<td></td>
<td>4 mm² 69 m 57 m 49 m 43 m 38 m 34 m 27 m 2) 2)</td>
</tr>
<tr>
<td></td>
<td>6 mm² 86 m 74 m 64 m 57 m 52 m 41 m 34 m 30 m</td>
</tr>
<tr>
<td></td>
<td>10 mm² 95 m 86 m 69 m 57 m 51 m</td>
</tr>
<tr>
<td></td>
<td>16 mm² 92 m 81 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo di cavo CA</th>
<th>Cavo di rame a 5 conduttori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro esterno del cavo CA</td>
<td>18-25 mm</td>
</tr>
<tr>
<td>Guaina d’isolamento cavo CA</td>
<td>Spelare la guaina isolante per 16 mm da tutti i 5 conduttori</td>
</tr>
<tr>
<td>Diametro del cavo di messa a terra</td>
<td>Uguale o superiore al diametro dei cavi di fase CA</td>
</tr>
</tbody>
</table>

Tabella 5.9 Specifiche dei cavi CA

1) L’uso di un cavo con un diametro inferiore a 4 mm² non è raccomandato.
2) L’uso di un cavo con un diametro inferiore ai 6 mm² non è raccomandato.

<table>
<thead>
<tr>
<th>Specifiche di serie FLX</th>
<th>Tipo di cavo CC</th>
<th>Min. 1000 V, 13,5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunghezza del cavo CC</td>
<td>Dimensione del cavo CC 4 mm²</td>
<td>< 200 m*</td>
</tr>
<tr>
<td></td>
<td>- 4,8 Ω /km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensione del cavo CC 6 mm²</td>
<td>200-300 m*</td>
</tr>
<tr>
<td></td>
<td>- 3,4 Ω /km</td>
<td></td>
</tr>
<tr>
<td>Connettore corrispondente</td>
<td>Sunclix PV-CM-S 2,5-6(+/-) / PV-CM-S 2,5-6(-)</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 5.10 Specifiche dei cavi CC

*La distanza tra inverter e array FV e ritorno, più la lunghezza totale dei cavi usati per l’installazione dell’array FV.

Considerare anche quanto segue quando si sceglie il tipo di cavo e la sezione dei conduttori:

- Temperatura ambiente
- Tipo di configurazione (muro interno, sotterraneo, all’aperto ecc.)
- Resistenza agli UV
Disegno 5.2 Serie FLX 5, perdite dovute al cavo [%] rispetto alla lunghezza del cavo [m]

Disegno 5.3 Serie FLX 6, perdite dovute al cavo [%] rispetto alla lunghezza del cavo [m]

Disegno 5.4 Serie FLX 7, perdite dovute al cavo [%] rispetto alla lunghezza del cavo [m]

Disegno 5.5 Serie FLX 8, perdite dovute al cavo [%] rispetto alla lunghezza del cavo [m]

Disegno 5.6 Serie FLX 9, perdite dovute al cavo [%] rispetto alla lunghezza del cavo [m]

Disegno 5.7 Serie FLX 10, perdite dovute al cavo [%] rispetto alla lunghezza del cavo [m]
5.6 Specifiche di coppia

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Attrezzo</th>
<th>Coppia di serraggio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Corpo del passacavo M16</td>
<td>Chiave inglese 19 mm</td>
<td>3,75 Nm</td>
</tr>
<tr>
<td>Passacavo M16, dado di compressione</td>
<td>Chiave inglese 19 mm</td>
<td>2,5 Nm</td>
</tr>
<tr>
<td>2 Corpo del passacavo M25</td>
<td>Chiave inglese 27 mm</td>
<td>7,5 Nm</td>
</tr>
<tr>
<td>Passacavo M25, dado di compressione</td>
<td>Chiave inglese 27 mm</td>
<td>5,0 Nm</td>
</tr>
<tr>
<td>3 Vite anteriore</td>
<td>Torx TX 20</td>
<td>1,5 Nm</td>
</tr>
</tbody>
</table>

Tabella 5.11 Specifiche Nm 1
Disegno 5.12 Panoramica dell'inverter con indicazioni di coppia 2

5.7 Specifiche della rete di alimentazione

<table>
<thead>
<tr>
<th>Serie FLX</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12.5</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrente massima inverter, (I_{\text{acmax}})</td>
<td>7.5 A</td>
<td>9 A</td>
<td>10.6 A</td>
<td>12.1 A</td>
<td>13.6 A</td>
<td>15.1 A</td>
<td>18.8 A</td>
<td>22.6 A</td>
<td>25.6 A</td>
</tr>
<tr>
<td>Fusibile consigliato tipo gL/gG(^*)</td>
<td>10 A</td>
<td>13 A</td>
<td>13 A</td>
<td>16 A</td>
<td>16 A</td>
<td>20 A</td>
<td>25 A</td>
<td>32 A</td>
<td></td>
</tr>
<tr>
<td>Fusibile automatico consigliato tipo B o C(^*)</td>
<td>16 A</td>
<td>16 A</td>
<td>16 A</td>
<td>20 A</td>
<td>20 A</td>
<td>25 A</td>
<td>25 A</td>
<td>32 A</td>
<td></td>
</tr>
</tbody>
</table>

\(^*\) Scegliere sempre fusibili secondo le normative nazionali.

5.8 Specifiche interfaccia ausiliaria

<table>
<thead>
<tr>
<th>Interfaccia</th>
<th>Parametro</th>
<th>Dettagli parametro</th>
<th>Specifiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 e Ethernet</td>
<td>Cavo</td>
<td>Diametro del rivestimento del cavo (⌀)</td>
<td>2x5-7 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo di cavo</td>
<td>Coppia intrecciata schermata (STP CAT 5e oppure SFTP CAT 5e) 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impedenza caratteristica del cavo</td>
<td>100 (\Omega) – 120 (\Omega)</td>
</tr>
<tr>
<td></td>
<td>Connettori RJ-45:</td>
<td>Sezione conduttore</td>
<td>24-26 AWG (in funzione della spina di accoppiamento RJ-45)</td>
</tr>
<tr>
<td></td>
<td>2 x RJ-45 per RS-485</td>
<td>Terminazione schermatura cavo</td>
<td>Mediante spina RJ-45 metallica</td>
</tr>
<tr>
<td></td>
<td>2 x RJ-45 per Ethernet</td>
<td>Isolamento galvanico dell'interfaccia</td>
<td>Sì, 500 Vrms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protezione da contatto diretto</td>
<td>Sì</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protezione contro i cortocircuiti</td>
<td>Sì</td>
</tr>
<tr>
<td>Solo RS-485</td>
<td>Cavo</td>
<td>Lunghezza max. del cavo</td>
<td>1000 m</td>
</tr>
<tr>
<td></td>
<td>Numero max. di nodi dell'inverter</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Solo Ethernet</td>
<td>Comunicazione</td>
<td>Topologia della rete</td>
<td>A stella e a cascata</td>
</tr>
<tr>
<td></td>
<td>Cavo</td>
<td>Lunghezza max. del cavo tra gli inverter</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Numero max. di inverter</td>
<td>100(^{11})</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 5.13 Specifiche della rete di alimentazione

Tabella 5.14 Specifiche interfaccia ausiliaria

Tabella 5.12 Specifiche Nm 2
1) Il numero massimo di inverter è 100. Se il modem GSM viene usato per il caricamento sul portale, il numero di inverter in una rete è limitato a 50.

2) Per l’uso all’aperto, raccomandiamo il tipo di cavo per esterni sotterraneo (se è posato sotto terra) sia per Ethernet che per RS-485.

5.9 RS-485 e collegamenti Ethernet

RS-485
Terminare il bus di comunicazione RS-485 su entrambe le estremità.

- La terminazione è automatica quando non è inserita nessuna spina RJ-45 nella presa. L’assenza di un connettore corrispondente sia la terminazione che la polarizzazione.
- In casi rari, la polarizzazione non è voluta, ma la terminazione è richiesta. Per terminare il bus RS-485, montare una resistenza di terminazione da 100 Ω in un connettore RJ-45 montabile nel campo. Quindi inserire il connettore (con la resistenza) nel connettore RJ-45 non utilizzato.
L’indirizzo RS-485 dell’inverter è unico e definito in fabbrica.

Disegno 5.13 Interfacce ausiliarie

Disegno 5.14 Dettaglio piedinatura RJ-45 per RS-485

1. GND
2. GND
3. RX/TX A (-)
4. BIAS L
5. BIAS H
6. RX/TX B (+)
7. Non connesso
8. Non connesso

Neretto = obbligatorio, il cavo Cat5 contiene tutti gli 8 conduttori. Per Ethernet: 10Base-TX e 100Base-TX auto-crossover.
5.9.1 Topologia della rete

L’inverter possiede due connettori Ethernet RJ-45 che consentono la connessione di vari inverter in una topologia di linea come alternativa alla tipica topologia a stella. Le due porte sono simili e possono essere usate in modo bidirezionale. Nel caso dell’RS-485 possono essere usate solo connessioni lineari in cascata.

AVVISO!

La topologia ad anello non è consentita.

Dati tecnici

<table>
<thead>
<tr>
<th>Pedinatura a Ethernet</th>
<th>Colore standard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 5 T-568A</td>
<td>Cat 5 T-568B</td>
<td></td>
</tr>
<tr>
<td>1. RX+</td>
<td>Verde/bianco</td>
<td>Arancione/bianco</td>
</tr>
<tr>
<td>2. RX</td>
<td>Verde</td>
<td>Arancione</td>
</tr>
<tr>
<td>3. TX+</td>
<td>Arancione/bianco</td>
<td>Verde/bianco</td>
</tr>
<tr>
<td>4. Blu</td>
<td>Blu</td>
<td></td>
</tr>
<tr>
<td>5. Blu/bianco</td>
<td>Blu/bianco</td>
<td></td>
</tr>
<tr>
<td>6. TX-</td>
<td>Arancione</td>
<td>Verde</td>
</tr>
<tr>
<td>7. Marrone/bianco</td>
<td>Marrone/bianco</td>
<td></td>
</tr>
<tr>
<td>8. Marrone</td>
<td>Marrone</td>
<td></td>
</tr>
</tbody>
</table>

AVVISO!

I due tipi di rete non possono essere mischiani. Gli inverter possono essere collegati solo in reti che sono unicamente RS-485 o unicamente Ethernet.

Disegno 5.15 Dettaglio piedinatura RJ-45 per Ethernet

Disegno 5.16 Topologia della rete